

Поиск низких цен

Главная > Советы > Советы по скобяным изделиям

Болтовые соединения несут одну функцию – крепления. Однако в зависимости от разновидности они должны держать различную весовую, вибрационную или динамическую нагрузку. От типа болта и его класса прочности напрямую зависят характеристики изделия. В этой статье специалисты Леруа Мерлен расскажут о разновидностях болтов и дадут расшифровку популярным маркировкам.

Разновидности болтов

Классификацию болтов можно производить по разным параметрам: по форме головки, стержня или резьбы. А также по назначению.

По форме головки бывают универсальные болты с шестигранной шляпкой, а также с круглой, овальной и квадратной.

По форме стержня выпускают метизы с резьбой, нанесённой на всю его длину или только на часть.

В зависимости от типа резьбы выделяют несколько разновидностей метизов:

болт;

винт;

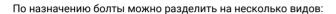
шпилька.

Болт снабжён головкой и резьбой по стержню. Она нужна, чтобы навинтить гайку. Болтовое соединение предполагает, что в двух деталях высверливаются сквозные отверстия, в которые вставляется болт, и с обратной стороны конструкция затягивается гайкой.

Недостаток соединения — увеличение веса конструкции, потребность в наличии места.

Достоинства соединения - легко заменять в случае обрыва.

Винтовое соединение предполагает, что крепление осуществляется за счёт самой детали, выполняющей одновременно и роль болта, и роль гайки. Причём возможны варианты как наличия резьбы на самой детали, нуждающейся в креплении, так и производство резьбы болтом при вкручивании, например, когда речь идёт о саморезах. Винт при этом вкручивается в корпус изделия с помощью специального торцевого инструмента.


Недостаток соединения— при монтаже резьба может повреждаться. В этом случае извлечь крепёж затруднительно. Не стоит применять этот вид скрепления при предполагаемом частом монтаже и демонтаже.

Достоинства соединения – малая площадь установки.

Шпилька — это крепёжное изделие цилиндрической формы, у которого нет головки. На концах шпильки расположена резьба одинакового диаметра. При креплении с помощью шпильки один конец изделия вворачивают в деталь, а на второй конец накручивается гайка соответствующего размера.

Недостаток соединения — может гнуться или терять прочность, при сильных нагрузках легко сорвать резьбу.

Достоинства соединения — удобное использование при необходимости частой сборки / разборки, а также при соединениях в труднодоступных местах.

лемешные (применяются для сельхозтехники);

мебельные (отличаются гладкой и ровной головкой, не выступающей над поверхностью);

дорожные (подходят для монтажа ограждений, а также хорошо фиксируют конструкции из дерева, пластика и металла);

машиностроительные (соединяют запчасти транспортных средств);

фундаментные (назначение в соответствии с названием);

путевые (соединяют рельсы).

Важно понимать, что универсальных болтов попросту не существует. Крепёж всегда необходимо выбирать, ориентируясь на класс прочности — только в этом случае можно говорить о безопасном и надёжном соединении.

Классы прочности

Класс прочности крепёжных изделий определяется их механическими свойствами. В соответствии с ГОСТ 1759.4-87 все крепёжные элементы (кроме гаек!) разделяют на 11 категорий и маркируют двумя цифрами, между которыми стоит точка: 3.6, 4.6, 4.8, 5.6, 5.8, 6.6, 6.8, 8.8, 9.8, 10.9, 12.9.

Чем выше значение, тем большее усилие может выдержать крепёж, и тем он прочнее.

По какому принципу изделие попадает в тот или иной класс прочности? Болты, винты и шпильки производят из различных сплавов углеродистых сталей. От марки стали, а также от способа обработки заготовки и зависит класс прочности элемента.

Для примера рассмотрим Сталь 35. Из неё можно сделать крепёж класса прочности 5.6— на токарном и фрезерном станке методом точения. С помощью объёмной штамповки на прессе уже получится крепёж класса прочности 6.6 и 6.8. Если мы подвергнем эти болты закалке, выйдут изделия класса прочности 8.8. То есть термическая обработка детали даёт нам классы прочности 8.8 и выше.

На качество крепежа влияет содержание в составе углерода. Чем его меньше, тем твёрже и надёжнее изделие.

Болты выпускаются в трёх вариантах прочности:

низкой — из Ст 10 и 20 — маркировка до 6,6; средней — Ст 35, из стали до 1,4% углерода — маркировка 6.6-8.8;

СТ, X, ХНМА, Г2Р, ХГСА, ХА— это обозначения марки стали, из которой сделан крепёж.

Ст 10 и 20 — углеродистая сталь низкой прочности. И болты, изготовленные из неё, выдерживают незначительный тоннаж (в маркировке — до 6.6). Подходят для малонагруженных соединений.

Сталь Ст 35 идёт на изготовление прочных болтов (от 6.6 до 8.8) и содержит добавки (марганец, хром или бор). Применяется для ответственных конструкций.

40X, 35X, 40XHMA, 20Г2Р, 35ХГСА, 38ХА— это легированные сплавы с закалкой и отпуском, из которых производят изделия прочностью 8.8 и более. Подходят для сборно-разборных конструкций.

Расшифровка терминов классности болтов

Класс прочности болта помогает нам понять, какими характеристиками обладает изделие. Основные термины:

Временное сопротивление — это предельная сила, которую можно приложить к изделию, после чего оно просто разрушится. Касается любого вида воздействия: сжатия и растяжения, изгибов и скручивания.

Предел текучести — это предельная рабочая нагрузка, после которой болт ещё не сломается, но будет невозвратно деформирован. При выборе изделия надо выбирать болты, превышающие требуемые вам параметры хотя бы вдвое

Специалисты выделяют и ещё один параметр— твёрдость по Виккерсу. Это значение, которое определяет, насколько болт устойчив к ударам и иным травматичным воздействиям со стороны других предметов.

В таблице ниже представлены класс прочности болта и соответствующие ему параметры: сопротивление и предел текучести.

Класс прочности гайки	Номинальное сопротивление в Н/мм2	Предел текучести, МПа
3.6	300	180-190
4.6	400	240
4.8	400	320-340
5.6	500	300
5.8	500	400-420
6.6	600	360-480
6.8	600	640
8.8	800	640-660
9.8	900	720
10.9	1000	900-940
12.9	1200	1080-1100

Расшифровка маркировки

Теперь рассмотрим, как рассчитываются и что означают данные параметры. Обратимся к маркировке. Первая цифра в наименовании класса прочности — это предельная нагрузка, при которой метиз разорвётся, иначе — предел прочности на разрыв: обозначает 1/100. Измеряется он в мегапаскалях (МПа) либо в ньютонах на квадратный миллиметр (Н/мм2). Для определения предела прочности в МПа надо умножить первую цифру маркировки на 100, а Н/мм2 — на 10.

Вторая цифра в маркировке класса прочности, идущая через точку, — это нагрузка, при которой метиз будет необратимо деформирован (вытянется, сожмётся и т.п.), иначе — предел текучести. Означает 1/10 отношения предела текучести к пределу прочности. Чтобы рассчитать этот параметр, надо умножить цифры класса прочности между собой, после чего полученный результат ещё умножить на 10.

Пример: для болта класса 6.8 предел текучести будет вычисляться 6 х 8 х 10 = 480 МПа.

По сути, предел текучести — это максимально возможная рабочая нагрузка на болт.

Ниже представлена таблица прочности болтов и нагрузки, которую они могут выдержать в зависимости от диаметра резьбы, площади поперечного сечения болта и класса прочности.

Диаметр резьбы	Площадь поперечного сечения болта, мм²	Нагрузка на разрыв, в тоннах									
	Класс прочности	3.6	4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9
M5	1,42	0,426	0,568	0,568	0,71	0,71	0,852	1,136	1,278	1,42	1,704
M6	2,01	0,603	0,804	0,804	1,005	1,005	1,206	1,608	1,809	2,01	2,412
M7	2,89	0,867	1,156	1,156	1,445	1,445	1,734	2,312	2,601	2,89	3,468
M8	3,66	1,098	1,464	1,464	1,83	1,83	2,196	2,928	3,294	3,66	4,392
M10	5,8	1,74	2,32	2,32	2,9	2,9	3,48	4,64	5,22	5,8	6,96
M12	8,433	2,529	3,372	3,372	4,215	4,215	5,058	6,744	7,587	8,43	10,116
M14	11,5	3,45	4,6	4,6	5,75	5,75	6,9	9,2	10,35	11,5	13,8
M16	15,7	4,71	6,28	6,28	7,85	7,85	9,42	12,56	14,13	15,7	18,84
M18	19,2	5,76	7,68	7,68	9,6	9,6	11,52	15,36	17,28	19,2	23,04
M20	24,5	7,35	9,8	9,8	12,25	12,25	14,7	19,6	22,05	24,5	29,4
M22	30,3	9,09	12,12	12,12	15,15	15,15	18,18	24,24	27,27	30,3	36,36
M24	35,3	10,59	14,12	14,12	17,65	17,65	21,18	28,24	31,77	35,3	42,36
M27	45,9	13,77	18,36	18,36	22,95	22,95	27,54	36,72	41,31	45,9	55,08
M30	56,1	16,83	22,44	22,44	28,05	28,05	33,66	44,88	50,49	56,1	67,32
M36	81,7	24,51	32,68	32,68	40,85	40,85	49,02	65,36	73,53	81,7	98,04

Важно!

При выборе болта, шпильки или винта необходимо ориентироваться на правило 1/2 или 1/3 — выбирать крепежи с двукратным или трёхкратным запасом.

У гаек 7 классов прочности, обозначаемых одним числом: 4, 5, 6, 8, 9, 10, 12. Эта цифра — 1/100 часть предела прочности того болта, с которым в парє должна идти гайка. Подобное сочетание болт + гайка — рекомендуемое. Оно даёт возможность равномерно распределять нагрузку.

Пример: гайка с пределом прочности 6 должна идти в комплекте с болтом, имеющим предел прочности 6 х 100 = 600 Мпа.

Представим сопрягаемые гайки и болты в виде таблицы

Класс прочности гайки	Сопрягаемые болты		
Тогасс прочности гайки	Класс прочности	Диаметр резьбы	
4	3.6; 4.6; 4.8	более М16	
5	3.6; 4.6; 4.8	менее или равное М16	
5	5.6; 5.8	менее или равное М48	
6	6.8	менее или равное М48	
8	8.8	менее или равное М48	
9	8.8	более М16 и менее или равное М48	
9	9.8	менее или равное М16	
10	10.9	менее или равное М48	
12	12.9	менее или равное М48	

Обратите внимание, что гайки высших классов прочности чаще всего легко заменяют гайки низших классов прочности. Но не наоборот! Взять гайку попрочнее разумно в случаях, когда предполагается наличие нагрузки выше предела текучести.

Категория изделия от 3.6 до 6.8 говорит о том, что эксплуатация возможна только в лёгких конструкциях. Изделия с маркировкой 8.8-12.9 считаются высоконадёжными.

Маркируются следующие виды изделий:

болты, имеющие шестигранную головку;

винты, состоящие из цилиндрической головки и внутреннего шестигранника;

шпильки;

гайки.

Болты маркируются на торцевой поверхности головки, тиснения могут быть выпуклыми либо заглублёнными и включают в себя следующие значения:

класс прочности элемента; клеймо завода-изготовителя; стрелку — указатель левосторонней резьбы.

Обязательной маркировке не подлежат:

болты, если их диаметр менее 6 мм; изделия класса прочности 6.8 или ниже; винты, имеющие прямой или крестообразный шлиц; нештампованные болты и винты, выполненные резанием или точением.

Шпильки маркируются на торце одним из специальных знаков:

круг — класс прочности 8.8; плюс — класс прочности 9.8; квадрат — класс прочности 10.9; треугольник — класс прочности 12,9.

На болты и винты маркировка наносится либо на боковую, либо на торцевую часть головки. Геометрия разных видов крепежа на основе резьбы регламентируется ГОСТами.

Гайки маркируются с торца классическим способом, так же как болты и винты.

Главное о классах прочности болтов

Крепёжные изделия — болты, шпильки, винты и гайки — отличаются и по размеру, и по характеристикам. Два одинаковых по внешним параметрам образца могут иметь разную прочность. Чтобы правильно подобрать крепёж, необходимо ориентироваться на маркировку изделия и помнить, что чем выше класс прочности, тем большую нагрузку способен выдержать метиз. В магазине Леруа Мерлен представлен широкий ассортимент самых разных крепёжных изделий, а наши специалисты помогут не ошибиться в выборе класса прочности.

С приложением покупки ещё проще!

Подарочная карта

Покупателям	Компания	Для бизнеса
Каталог	Наши вакансии	Корпоративным клиента
Услуги	Наши марки	Профессиональная карта
Кредит	Развитие сети	Партнерская программа
Доставка и самовывоз	Наша компания	Как стать поставщиком
Возврат товара	Контакты	Как стать партнёром по
Вопросы и ответы		услугам
Сервисная карта		

Будьте в курсе новостей

Адрес почты

Подписаться

Подписываясь на рассылку, я даю согласие на обработку персональных данных и на получение рекламных сообщений и новостей о товарах и услугах. Сайт защищён системой геСАРТСНА, к нему применяется политика конфиденциальности и условия использования Google.

Политика обработки Правила персональных данных продажи

Правила применения рекомендательных технологий