ВРЕМЕННАЯ ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ КЛАССИФИКАЦИИ ЗАПАСОВ МЕСТОРОЖДЕНИЙ И ПРОГНОЗНЫХ РЕСУРСОВ ПРИРОДНЫХ НЕФТЯНЫХ БИТУМОВ

1. Общие положения

- 1.1. Природные нефтяные битумы* полезные ископаемые органического происхождения с первичной углеводородной основой генетически представляют собой естественные производные нефтей, залегающие в недрах в твердом, вязком и вязко-пластичном состоянии.
- 1.2. Единых генетической и промышленной классификации битумов не создано. По физико-технологическим показателям и групповому составу, зависящим от состава исходных нефтей и условий их преобразования, битумы условно подразделяются на несколько классов: мальты, асфальты, асфальтиты, кериты и антраксолиты с плавными переходами между ними (см. таблицу). Особую генетическую ветвь битумов составляют киры продукт субаэрального изменения излившейся на поверхность малосмолистой метановой и метано-нафтеновой нефти, подразделяемые на те же классы. Отдельным классом битумов являются озокериты производные метановых и метаново-нафтеновых нефтей; масляная часть озокеритов сложена в основном твердыми углеводородами парафинового ряда (церезинами).
- 1.3. Состав битумов высокомолекулярные углеводороды (76—89 % по массе) и в подчиненном количестве гетероатомные (кислородные, сернистые, азотистые, металлсодержащие) соединения; отношение углерода к водороду изменяется от 6—7 (мальты) до 10—11 (асфальтиты).

Для некоторых разностей битумов характерна обогащенность серой (до 10 % по массе), а также металлами (ванадием, никелем, ураном, бериллием, рением, ртутью и др.).

1.4. Образовываясь на путях миграции и в местах аккумуляции нефтей, битумы накапливаются в коллекторах порового, кавернового, трещинного и смешанного типов в терригенных отложениях и карбонатных породах, которые при содержании битума не менее 1 % по массе называются битумонасыщенными.

^{*} В дальнейшем именуются «битумы».

Основные свойства битумов

Класс	Консистенция	Плотность, г/см ³	Температура плавления (размягчения), °С	Растворимость в хлороформе	Содер- жание масел, %
Мальты Асфаль- ты Асфаль- титы	От вязкой до твердой Вязкая, полутвердая и твердая Твердая	0,965—1,0 1,0—1,1 1,05—1,20	35—40 От 20—30 до 80—100 180—300	Полная — » —	40—65 25—40 25
Кериты		1,0—1,25	Не пла- вится	Частичная до нераст- воримых	-
Антрак- солиты	Очень твердая	1,3-2,0	> 	Нераство- римые	
Озоке- риты	От вязкой (мазеобраз- ной) до твердой	0,85-0,97	50—85	Полная	2085

По условиям залегания выделяются три основных типа месторождений (залежей) битумов: пластовые, жильные и покровные.

С залежами пластового типа связаны основные запасы битумов.

Залежи, приуроченные к моноклиналям, контролируются зонами выклинивания и несогласного срезания региональных нефтегазоносных комплексов осадочных бассейнов. Месторождения располагаются на бортах мезо-кайнозойских прогибов, примыкающих к щитам и сводам древних платформ (месторождения Оленекского свода).

Пластовые залежи битумов, связанные с антиклинальными, преимущественно куполовидными структурами, распространены в основном в пределах эродированных сводовых поднятий и палеоподнятий в районах древних платформ (месторождения Анабарского массива, Алданского щита на Сибирской платформе, Среднепечорского палеоподнятия в Тимано-Печорской провинции), а также на бортах внутриплатформенных впадин и сопряженных склонах крупных поднятий (группа месторождений Мелекесской впадины и Южного купола Татарского свода).

От нефтяных битумные залежи пластового типа отличаются: — прерывистым характером насыщения битумов единого пласта-коллектора (в виде изолированных гнезд, линз и вкраплений), нередко с наличием в теле залежей водоносных прослоев и участков;

— во многих случаях — отсутствием четких контуров, и в частности поверхности водобитумного контакта.

Жильные (и штокверковые) битумные залежи формируются на путях вертикальной миграции углеводородов по тектоническим трещинам и приурочены к локальным разрывам на нефтегазоносных структурах (Садкинское, Ивановское, Бориславское месторождения и др.), зонам региональных разломов в передовых частях

складчатых систем и на бортах межгорных впадин и краевых прогибов.

Покровные залежи битумов образуются в результате субаэрального превращения излившихся нефтей, тяготеют к областям альпийской складчатости — внутренним частям бортов краевых прогибов и синклинальным прогибам, характеризуются высокой концентрацией битумов при сравнительно небольших запасах. Отдельные залежи образуют так называемые асфальтовые озера (Охинское и Нутовское на о-ве Сахалин).

1.5. Битумы как комплексное сырье, в основном химическое и энергетическое, используются для получения легкой синтетической нефти, нефтяного кокса, компонентов моторного топлива, для извлечения серы, ценных элементов (ванадия, никеля, урана, германия и др.), в промышленности строительных материалов (для производства мягкой кровли, асфальтовой мастики, дорожных покрытий и др.), в электропромышленности (для производства изоляторов, антикоррозийных изоляционных покрытий) и для других целей.

Озокерит идет в основном на производство церезина.

Качество битумов регламентируется требованиями государственных стандартов и технических условий (см. прил. 1*).

Промышленная ценность битумов определяется на основании технико-экономических расчетов рентабельности получения товарной продукции.

- 1.6. Разработка месторождений битумов осуществляется тремя способами:
- карьерным и шахтным очистным, при которых породу извлекают на поверхность, где из нее экстрагируют битум растворителем, горячей водой с добавками эмульгирующих систем и т. п.;
- шахтным дренажным, при котором битум добывается в шахте через систему дренажных скважин, пробуренных из горных выработок, без выемки битумонасыщенных пород на поверхность;
- скважинным внутрипластовым, при котором битумы добываются через скважины, пробуренные с поверхности, путем термического или иного воздействия на битумонасыщенные породы.

Способ разработки зависит от типа месторождений, условий и глубины залегания битумонасыщенных пород, величины запасов, коллекторских свойств пород, качества и физико-химических свойств битумов.

1.7. В настоящей инструкции излагаются общие принципы изучения и подсчета запасов месторождений битумов. Эти принципы распространяются также на месторождения высоковязких нефтей, добыча которых, в отличие от обычных нефтей, не может осуществляться традиционными методами.

^{*} Номера и требования стандартов и технических условий приведены по состоянию на 1 января 1985 г. При пользовании Инструкцией необходимо учитывать все вносимые в них изменения и дополнения.

2. Требования к изученности месторождений

- 2.1. Для наиболее эффективного изучения месторождений необходимо соблюдать установленные стадии геологоразведочных работ, строго выполнять требования к их полноте и качеству, осуществлять рациональное комплексирование методов и технических средств разведки, своевременно производить постадийную геолого-экономическую оценку результатов работ. Изученность месторождения должна обеспечить возможность его комплексного освоения, а также решение вопросов охраны окружающей среды.
- 2.2. На выявленном месторождении битумов проводится предварительная разведка в объемах, необходимых для обоснованной оценки их промышленного значения. По результатам предварительной разведки составляется технико-экономический доклад (ТЭД) о целесообразности проведения детальной разведки и разрабатываются временные кондиции (рассчитывается коэффициент извлечения) раздельно для битумов, содержащихся в них компонентов и попутных полезных ископаемых. В соответствии с утвержденными в установленном порядке временными кондициями подсчитываются запасы битумов, попутных полезных ископаемых и компонентов, имеющих промышленное значение, по категориям С2 и частично С1.
- 2.3. Детальная разведка или подготовка к разработке проводится только на месторождении (залежи), получившем положительную оценку по результатам предварительной разведки и намечаемом к промышленному освоению в ближайшие годы. По результатам детальной разведки или подготовки месторождения к разработке уточняются значения геолого-промысловых параметров, выполняется подсчет запасов по категориям C_1 и частично C_2 и составляется технологическая схема разработки месторождения. При проектировании детальной разведки следует определять участки первоочередной отработки.
- 2.4. По детально разведанному месторождению необходимо иметь топографическую основу в масштабе, соответствующем особенностям геологического строения, размерам месторождения и рельефу местности. Обычно топографическая основа составляется в масштабах 1:2000—1:10000.

На топографическую основу по данным инструментальной привязки наносятся все разведочные и эксплуатационные выработки, а также профили геофизических наблюдений и отбора геохимических проб. Для скважин необходимо вычислить координаты точек пересечения ими кровли и подошвы пластов битумонасыщенных пород и построить проложения стволов на плоскости планов и разрезов с учетом азимутальных и зенитных искривлений. Для разрабатываемых шахтным или карьерным способом месторождений битумов используются маркшейдерские планы в масштабах 1:500—1:1000.

2.5. По району месторождения битумов должна быть составлена геологическая карта в масштабе 1:25000—1:50000 с разреза-

ми, отвечающая требованиям инструкции к картам этого масштаба, а также другие графические материалы, обосновывающие оценку прогнозных ресурсов.

Карты и разрезы к ним должны отражать геологическое строение района, положение основных геологических структур и комплексов пород, условия залегания битумонасыщенных и нефтенасыщенных пород, закономерности размещения месторождений и проявлений.

При составлении геологической карты и разрезов следует использовать данные проведенных в районе геофизических и геохимических исследований и отразить на них результаты интерпретации геофизических и геохимических аномалий.

2.6. Геологическое строение месторождения и его гидрогеологические условия должны быть детально изучены и отображены на соответствующих картах масштабов 1:2000—1:10000. Для составления этих карт и разрезов к ним следует использовать данные по всем естественным обнажениям, разведочным и эксплуатационным скважинам и горным выработкам, а также данные геофизических и геохимических исследований.

Указанные материалы должны с детальностью, достаточной для подсчета запасов, давать представления:

- о форме, размерах, внутреннем строении залежей битумов, условиях их залегания, взаимоотношениях с литологическими комплексами пород, складчатыми структурами и разрывными нарушениями, характере и закономерностях изменчивости морфологии и внутреннего строения залежей;
- о гидрогеологических, геокриологических, горно-геологических и других природных условиях, определяющих способ вскрытия и условия разработки месторождения.

Для месторождений, разработка которых предполагается скважинным внутрипластовым способом, необходимо установить фильтрационно-емкостные свойства пород-коллекторов и экранирующие свойства пород-окрышек битумных залежей, водопроводимость и литологические особенности битумонасыщенных пород по площади и разрезу, положение и толщины водоносных и водоупорных горизонтов, высоту напора подземных вод над водоупорной кровлей.

2.7. На месторождениях, находящихся на поверхности и при неглубоком залегании битумонасыщенных пород приповерхностные части месторождения (участка) должны быть изучены с особой тщательностью. При расчлененном рельефе и наклонном залегании битумонасыщенных пород должны быть прослежены выходы продуктивных пластов под покровные отложения, а на закрытых месторождениях (участках) — получены данные, необходимые для построения гипсометрического плана поверхности погребенных продуктивных пластов. Следует определить глубины и положение зон физического и химического выветривания, состав и свойства покровных отложений, а в случае предполагаемой разработки откры-

тым или подземным способом — наличие или отсутствие в них полезных ископаемых.

2.8. Разведка месторождений битумов проводится в основном скважинами при подчиненной роли горных выработок (расчисток, канав, шурфов, уклонов), используемых главным образом для изучения приповерхностных частей.

Способ бурения и конструкция разведочных скважин определяются в каждом конкретном случае проектом разведки. Во всех случаях конструкция скважин должна обеспечить возможность проведения геофизических исследований, испытания на приток жидкости и газа, отбора пластовых проб.

Для получения надежных данных о морфологии, условиях залегания битумных залежей и битумонасыщенности слагающих их пород, а также для отбора технологических проб и контроля данных бурения следует бурить скважины большого диаметра, а при благоприятных условиях — проходить подземные горные выработки. Целесообразную глубину разведки битумных залежей необходимо в каждом конкретном случае обосновать технико-экономическими расчетами, учитывающими промышленное значение битумов и попутных полезных ископаемых, геологические условия их залегания и предполагаемые способы вскрытия и разработки.

2.9. Размещение, глубина и плотность сети разведочных скважин определяются особенностями геологического строения месторождения (участка), сложностью условий залегания битумных залежей, степенью выдержанности их морфологии и внутреннего строения, а также изменчивостью битумонасыщенности пород и качества битумов. В каждом конкретном случае устанавливается пренмущественное влияние того или иного фактора на плотность сети разведочных скважин и систему их размещения с учетом предполагаемого способа разработки месторождения.

Для разведки многопластовых месторождений битумов система расположения разведочных скважин (горных выработок) и расстояния между ними устанавливаются исходя из необходимости более высокой изученности группы пластов (залежей), имеющих наибольшее промышленное значение (высокая концентрация и основные запасы ценных компонентов, более экономичное извлечение битумов и т. д.). Необходимая степень разведанности остальных пластов (залежей) и сроки вовлечения их в разработку определяются в зависимости от их положения в разрезе и относительного промышленного значения.

- 2.10. Участки и пласты, намечаемые к первоочередной разработке, должны быть разведаны наиболее детально. Выбор участков и пластов первоочередной разработки определяется ТЭД по обоснованию детальной разведки, а на действующих предприятиях согласовывается с проектирующей или разрабатывающей организацией.
- 2.11. В процессе бурения скважин из интервалов битумонасыщенных, перспективных на битумы, а также перекрывающих и подстилающих пород производится отбор керна, количество и ка-

чество которого должны обеспечить надежное установление толщины битумных тел, изменчивости литологических особенностей и физических свойств битумонасыщенных пород и покрышек по площади и разрезу, а также надежную интерпретацию результатов геофизических исследований. Выход керна из интервалов битумонасыщенных пород, как правило, должен быть не менее 80 %.

Вскрытие скважинами битумонасыщенных и перспективных на битумы пород следует производить с применением нефильтрую-

щихся растворов, не содержащих нефтепродуктов.

2.12. Во всех скважинах глубиной более 100 м через каждые 25—50 м необходимо измерять азимутальные и зенитные углы стволов и результаты измерений использовать при построении геологических разрезов и планов, а также при расчетах величины битумонасыщенных интервалов.

- 2.13. По каждой скважине должен быть проведен комплекс исследований в объеме, необходимом для подсчета запасов, а именно:
- детальное и комплексное изучение керна битумонасыщенных, а также перекрывающих и подстилающих пород с целью определения их литологических особенностей, гранулометрического и минерального состава, открытой пористости, проницаемости, битумонасыщенности, остаточной водонасыщенности, плотности, теплоемкости и др.;
- комплекс геофизических исследований в скважинах (ГИС), который определяется исходя из поставленных задач и конкретных геолого-геофизических условий месторождения. Результаты ГИС следует увязать с данными анализов керна с целью получения петрофизических зависимостей и выработки рационального комплекса ГИС для определения параметров залежей битумов;
- комплекс гидродинамических исследований, уточняющих физические свойства битумонасыщенных пород и режим работы залежей.
- 2.14. Все разведочные и эксплуатационные выработки, а также выходы битумонасыщенных пород на поверхность документируются по типовым формам. При документации выработок, пройденных по битумонасыщенным породам, следует фиксировать их литологические и структурно-текстурные особенности, кавернозность, пористость, закарстованность, наличие разрывных нарушений и зон дробления.
- 2.15. Все разведочные и эксплуатационные горные выработки, вскрывшие битумонасыщенные породы, а также характерные обнажения должны быть опробованы. Сечения борозды, длина опробуемых интервалов, расстояния между бороздами, начальная масса проб определяются размерами битумных залежей, условиями их залегания, формой, геологическим строением и степенью изменчивости битумонасыщенности пород.

При выборе оптимальных интервалов опробования (длин проб) следует учитывать установленную временными кондициями минимальную толщину пластов битумонасыщенных пород и некондиционных прослоев.

2.16. Опробование керна скважин производится непрерывно по всему разрезу битумонасыщенных пород. Пробы необходимо отбирать секциями; длина секций зависит от толщины, степени однородности строения залежи и битумонасыщенности пород.

Во всех скважинах из испытываемых интервалов должны отбираться пробы битумов, газа, воды. При применении методов воздействия на пласт пробы отбираются до и после обработки. При испытании на приток замеряются пластовые и забойные давления, а также пластовая температура.

- 2.17. В пробах, отобранных в процессе опробования и опытно-промышленной разработки, должны быть определены:
- содержание битумов в породе (в процентах по объему и по массе);
- для битумов в стандартных и пластовых условиях фракционный и групповой состав, содержание (в процентах по объему и по массе) масел, смол (отдельно силикагелевых и спиртобензольных), асфальтенов, парафинов, серы и металлов, плотность, вязкость, газосодержание, растворимость газа в битуме, изменение объема, плотности и вязкости битумов при различных температурах (20; 50; 100 °C) и давлениях, коэффициент упругости битума, температуры плавления и застывания. Качество природных битумов определяется в соответствии с требованиями действующих стандартов и технических условий;
- для свободного и растворенного газа относительная плотность (по воздуху), теплота сгорания, химический состав.

При изучении состава природных битумов необходимо оценить промышленное значение содержащихся в них серы, металлов и других попутных компонентов и выявить примеси, оказывающие вредное влияние на окружающую среду и оборудование при добыче, транспортировке и переработке битумов (агрессивность к металлу, цементу и пластмассам, выпадение солей, механических примесей, выделение сероводорода и др.).

- 2.18. Технологические свойства битумонасыщенных пород, как правило, изучаются в лабораторных и полупромышленных условиях. При имеющемся опыте переработки сходных по составу и качеству битумонасыщенных пород в промышленных условиях допускается использование аналогии, подтвержденной результатами лабораторных исследований.
- 2.19. При разведке месторождения, намечаемого для разработки скважинным внутрипластовым способом, необходимо произвести лабораторное технологическое изучение битумонасыщеных пород (определение извлекаемости битумов из образцов). На основе этих данных, а также результатов изучения фильтрационных свойств, водопоглощения и других параметров битумонасыщенных пород оценивается степень аналогии их по технологическим и другим свойствам с битумонасыщенными породами другого месторождения (участка), на котором проводились опытные работы или разработка скважинным внутрипластовым способом.

При доказанной аналогии данные этих опытных работ или разработки принимаются для разведуемого месторождения и корректируются по результатам лабораторного технологического изучения битумонасыщенных пород. При отсутствии аналога битумонасыщенным породам разведуемого месторождения по технологическим свойствам на одном из его участков необходимо провести опытную разработку скважинным внутрипластовым методом. В процессе ее следует определить влияние специальных технических мероприятий (управление потоком теплоносителя, строительство противофильтрационных завес, улучшение фильтрационных свойств битумонасыщеных пород и др.) на эффективность работы установок.

- 2.20. При разведке месторождения (участка), намечаемого к разработке карьерным или шахтным очистным способом, лабораторные технологические испытания битумонасыщенных пород производятся на пробах, составленных из соответствующих природных разновидностей в соотношении, пропорциональном среднему для месторождения (участка). По результатам этих иследований должны быть установлены технологические свойства битумов, определяющие возможность их промышленного использования.
- 2.21. Результаты лабораторных технологических исследований при необходимости проверяются полупромышленными испытаниями. Проверке и уточнению подлежат операции переработки битумонасыщенных пород и соответствие полученного в результате испытаний продукта требованиям стандартов и технических условий.

Масса проб для полупромышленных испытаний определяется совместно с организациями, производящими эти испытания.

- 2.22. Технологические пробы должны отвечать по химическому составу, текстурно-структурным особенностям, физическим и другим свойствам среднему составу битумонасыщенных пород месторождения.
- 2.23. Технологические свойства битумонасыщенных пород должны быть изучены с детальностью, обеспечивающей получение исходных данных, достаточных для проектирования технологической схемы их переработки с комплексным извлечением содержащихся в них компонентов, имеющих промышленное значение. Следует также изучить возможность использования получаемых при извлечении битумов отходов, утилизация которых может существенно повысить экономические показатели разработки месторождения.
- 2.24. Для месторождений, намечаемых к разработке путем выемки битумонасыщенных пород, определение объемной массы следует производить в лабораторных условиях. Одновременно на этом же материале определяется содержание влаги. Достоверность определения объемной массы должна контролироваться по всем операциям (отбору, измерениям, взвешиванию образцов, расчетам).
- 2.25. При разведке месторождений; намечаемых к разработке скважинным внутрипластовым способом, необходимо определять

эффективную проницаемость как битумонасыщенных, так и покрывающих и подстилающих залежь (пласт) пород с целью оценки ее гидроизоляции. При проведении технологических испытаний изучаются теплопроводность и теплоемкость пород залежи (пласта).

2.26. В процессе гидрогеологических исследований должны быть изучены основные водоносные горизонты, которые могут участвовать в обводнении залежи, выявлены наиболее обводненные участки и зоны. По каждому водоносному горизонту необходимо установить его толщину, литологический состав, типы коллекторов, условия питания, взаимосвязь с другими водоносными горизонтами и поверхностными водами, положение уровней подземных вод и другие параметры, необходимые для расчета возможных водопритоков в горные выработки и разработки водопонизительных и дренажных мероприятий.

Следует изучить химический состав и бактериологическое состояние вод, которые могут участвовать в обводнении месторождения, их агрессивность по отношению к бетону, металлу, полимерам, определить содержание в них полезных компонентов и вредных примесей; оценить возможность использования этих вод для водоснабжения или извлечения из них ценных компонентов, а также влияние их дренажа на действующие в районе месторождения водозаборы; дать рекомендации по проведению в последующем специальных изыскательских работ.

При разведке месторождений битумов, разработка которых намечается скважинным внутрипластовым способом, необходимо установить:

- рельеф подошвы продуктивного пласта;
- фильтрационные, коллекторские и водоупорные свойства слагающих месторождение битумонасыщенных пород, а также перекрывающих и подстилающих продуктивные пласты отложений, химический и газовый состав подземных вод, его изменение по площади и разрезу; температуру подземных вод;
- гидрогеологические параметры: водопроницаемость и пьезопроводность, а также их изменение по площади и разрезу;
- наличие крупных водопроводящих систем макропустот (карстовых полостей, зон дробления и др.);
- эффективность применения различных методов искусственного улучшения фильтрационных свойств битумонасыщенных пород; возможные изменения гидродинамических условий залежи.
- 2.27. В результате инженерно-геологических исследований должны быть изучены физико-механические свойства битумонасыщенных пород, вмещающих и перекрывающих отложений, определяющие их прочность в естественном и водонасыщенном состоянии; литологический и минеральный состав пород, их трещиноватость, слоистость и сланцеватость, а также возможность возникновения грифонов, оползней, селей и других явлений, которые могут осложнить разработку месторождения.

В районах с развитием многолетнемерзлых пород необходимо эпределить температурный режим пород, положение верхней и нижней границ мерзлотной зоны, контуры и глубины распространения таликов, изменение физических свойств пород при оттаивании и промерзании — с целью получения необходимых данных для проектирования предприятий по добыче природных битумов и составления прогноза возможных изменений окружающей среды.

На участках, предназначенных для разработки карьерным способом, должны быть изучены инженерно-геологические параметры, определяющие устойчивость бортов карьеров, в породах вскрыши — выделены и прослежены пласты и прослои с резко отличной от общей для вскрышных пород прочностью. При подземной отработке необходимо особенно детально изучить условия залегания продуктивного пласта, физико-механические свойства пород, залегающих непосредственно в кровле и подошве битумонасыщенных пород, а также в структурно-ослабленных зонах.

Инженерно-геологические исследования должны проводиться в соответствии с действующей «Инструкцией по изучению инженерно-геологических условий месторождений твердых полезных ископаемых при их разведке» (Мингео СССР, 1975).

- 2.28. Необходимо исследовать природную газоносность месторождений природных битумов, пути миграции газов, определить газоносность различных стратиграфических и литологических горизонтов и тектонических структур, связь газоносности с трещиноватостью и обводненностью пород, оценить интенсивность выделения газов на различных глубинах разработки. Объем и методика этих исследований определяются конкретными геологическими особенностями месторождения.
- 2.29. Для характеристики разведуемого месторождения следует использовать данные о применяемых способах разработки битумонасыщенных пород, степени обводненности и инженерно-геологических условиях горных выработок по разрабатываемым месторождениям, расположенным в том же районе и находящимся в аналогичных гидрогеологических и инженерно-геологических условиях.
- 2.30. Гидрогеологические, инженерно-геологические, геокриологические, горно-геологические и другие природные условия должны быть изучены с детальностью, обеспечивающей получение исходных данных для составления проекта разработки месторождения.
 - 2.31. В районе разведанного месторождения необходимо:
- оценить сырьевую базу строительных материалов и возможные источники хозяйственно-питьевого и технического водоснабжения, способные удовлетворить потребности будущих предприятий но добыче природных битумов, или дать рекомендации по проведению в дальнейшем специальных геологоразведочных, гидрогеологических и изыскательских работ;
- выявить местоположение площадей с отсутствием залежей полезных ископаемых, где могут быть размещены объекты производственного и жилищно-гражданского назначения;

- дать рекомендации по разработке мероприятий по охране недр, предотвращению загрязнения окружающей среды и рекультивации земель. Должны быть проведены исследования, обеспечивающие проектные решения по обезвреживанию сточных вод.
- 2.32. Другие полезные ископаемые, образующие во вмещающих и перекрывающих породах самостоятельные залежи, и содержащиеся в битумонасыщенных породах попутные компоненты должны быть изучены в степени, позволяющей определить их промышленную ценность и области возможного использования. При их оценке следует руководствоваться «Требованиями к комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов» (ГКЗ СССР, 1982).

3. Требования к подсчету запасов

- 3.1. Подсчет запасов природных битумов и их компонентов производится в соответствии с требованиями разделов I, II и III «Классификации запасов месторождений и прогнозных ресурсов природных нефтяных битумов» при соблюдении следующих условий.
- 3.1.1. Запасы категории А подсчитываются на разрабатываемых месторождениях (залежах), изученных в степени, отвечающей требованиям Классификации к этой категории, в границах горно-эксплуатационных и горно-подготовительных работ (карьера, шахтного поля), а при разработке скважинным внутрипластовым способом в границах, проведенных по добывающим скважинам, пройденным в соответствии с проектом разработки месторождения (залежи).
- 3.1.2. Запасы категории В подсчитываются на разрабатываемых месторождениях (залежах), изученных в степени, отвечающей требованиям Классификации к этой категории, в границах, проведенных по скважинам или горным выработкам, пройденным в соответствии с утвержденной технологической схемой или проектом опытно-промышленной разработки месторождения.
- 3.1.3. Запасы категории C_1 подсчитываются на разведанных и разрабатываемых месторождениях (залежах), изученных в степени, отвечающей требованиям Классификации к этой категории, в границах, проведенных в соответствии с требованиями кондиций по данным бурения разведочных скважин и геологически обоснованной экстраполяции с учетом результатов геофизических исследований.
- 3.1.4. Запасы категории C_2 подсчитываются в неразведанных частях залежей, примыкающих к участкам с запасами битумов более высоких категорий и изученных в степени, отвечающей требованиям Классификации к этой категории, в границах, проведенных на основании данных единичных скважин, горных выработок, естественных обнажений, а также геологически обоснованной экстраполяции с учетом результатов геофизических исследований.

- 3.2. Ширина зон экстраполяции в каждом конкретном случае должна быть обоснована фактическим материалом. Не допускается экстраполяция в направлении зон разрывных нарушений, выклинивания и глинизации пластов, ухудшения горно-геологических условий их разработки, а при намечаемой разработке месторождения скважиным внутрипластовым способом также в направлении ухудшения фильтрационных свойств залежи и других показателей, влияющих на разработку месторождения этим способом.
- 3.3. Забалансовые запасы природных битумов подсчитываются и учитываются в случае, если в ТЕО кондиций доказана возможность их сохранения в недрах для последующего извлечения. При подсчете этих запасов производится их подразделение в зависимости от причин отнесения к забалансовым (экономических, технологических, гидрогеологических или горнотехнических).
- 3.4. Запасы месторождений битумов (отдельных залежей или их частей), находящихся в охранных целиках и в пределах охранных зон крупных водоемов и водотоков, населенных пунктов, капитальных сооружений, сельскохозяйственных объектов, заповедников, памятников природы, истории и культуры, относятся к балансовым или забалансовым на основании технико-экономических расчетов, в которых учитываются затраты, связанные с переносом объектов или с применением специальных способов разработки месторождений.
- 3.5. Подсчет запасов попутных полезных ископаемых и компонентов на месторождениях природных битумов производится в соответствии с «Требованиями к комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов».
- 3.6. Материалы подсчета запасов должны содержать оценку общих запасов месторождения в его геологических границах в соответствии со степенью их разведанности.
- 3.7. Подсчет запасов битумов, разработка которых намечается карьерным или шахтным очистным способом, оформляется в соответствии с «Инструкцией о содержании, оформлении и порядке представления в ГКЗ СССР и ТКЗ Министерства геологии СССР материалов по подсчету запасов металлических и неметаллических полезных ископаемых» (ГКЗ СССР, 1984).

Подсчет запасов битумов, разработка которых намечается шахтным дренажным и скважинным внутрипластовым способами, оформляется в соответствии с «Инструкцией о содержании, оформлении и порядке представления в ГКЗ СССР материалов по подсчету запасов нефти и горючих газов» (ГКЗ СССР, 1984).

4. Подготовленность разведанных месторождений для промышленного освоения

4.1. Подготовленность разведанных месторождений битумов для промышленного освоения определяется в соответствии с требова-

ниями раздела IV «Классификации запасов месторождений и прогнозных ресурсов природных нефтяных битумов».

- 4.2. Соотношение балансовых запасов битумов различных категорий, установленное подпунктом 19, б Классификации как один из критериев подготовленности разведанного месторождения (залежи, участка) для промышленного освоения, должно быть достигнуто применительно к суммарным запасам, принятым в ТЭО постоянных кондиций. В случае уменьшения или увеличения запасов по результатам подсчета или ухудшения качества полезного ископаемого по сравнению с принятыми в ТЭО кондиций возможность использования этих кондиций должна быть подтверждена укрупненными технико-экономическими расчетами, а нормативное соотношение запасов различных категорий достигнуто для запасов, принятых этими расчетами.
- 4.3. Целесообразность использования при проектировании предприятия по добыче и переработке битумов запасов категории С₂ сверх установленных нормативным соотношением должна быть обоснована технико-экономическими расчетами, учитывающими целесообразность повышения срока обеспеченности предприятия запасами или увеличения его производительности, а также горногеологические условия месторождения и технологические свойства полезного ископаемого.

Возможность полного или частичного использования этих запасов для проектирования следует обосновать аналогией геологического строения залежей и технологических особенностей битумонасыщенных пород в границах запасов C_2 и в границах запасов более высоких категорий, а также надежностью запасов категории C_2 , подтвержденной их переводом в более высокие категории на представительных, детально разведанных участках месторождения.

ПЕРЕЧЕНЬ ОСНОВНЫХ СТАНДАРТОВ И ТЕХНИЧЕСКИХ УСЛОВИЙ НА НЕФТЯНЫЕ БИТУМЫ

ГОСТ 4.61—80	СПКП. Битумы нефтяные. Номенклатура показателей
ΓΟCT 781—78	Битум нефтяной высокоплавкий мягчитель. Технические условия
ΓΟCT 2488—79	Церезин. Технические условия
ΓΟCT 6617—76	Битумы нефтяные строительные. Технические условия
ГОСТ 8771—76	Битум нефтяной для заливочных аккумуляторных мастик. Технические условия
ΓΟCT 9548—74	Битумы нефтяные кровельные
ΓΟCT 9812—74	Битумы нефтяные изоляционные
ΓΟCT 11955—82	Битумы нефтяные дорожные жидкие
ΓΟCT 21822—76	Битумы нефтяные специальные. Технические условия
ГОСТ 22245—76	Битумы нефтяные дорожные вязкие. Технические условия
ТУ 38.101456—74	Битумы нефтяные высокоплавкие
ТУ 38.101509—79	Церезин нефтяной неочищенный
ТУ 38.101566—75	Битум нефтяной для производства кровельных покрытий и гидроизоляционных работ
ТУ 38.101580—75	Битумы нефтяные пластобит
ТУ 38.101582—75	Сырье для производства нефтяных вязких дорожных битумов
ТУ 38.101626—76	Сырье для производства покровных кровельных битумов
ТУ 38.101970—84	Битумы нефтяные для кровельных мастик
ТУ 38.101989—84	Битум нефтяной пластичный для защитных покровов кабелей