министерство чёрной металлургии ссср

временная инструкция

ПО ПРОЕКТИРОВАНИЮ ЗАЩИТНЫХ МЕРОПРИЯТИЙ ОТ ПОДТОПЛЕНИЯ ГРУНТОВЫМИ ВОДАМИ ЗДАНИЙ И СООРУЖЕНИЙ

министерство черной металлургии ссср

УТВЕРЖДАЮ

Заместитель Министра черной металлургии СССР В.С.ВИНОГРАДОВ

19 мая 1978 г.

ВРЕМЕННАЯ ИНСТРУКЦИЯ

ПО ПРОЕКТИРОВАНИЮ ЗАЩИТНЫХ МЕРОПРИЯТИЙ ОТ ПОДТОПЛЕНИЯ ГРУНТОВЫМИ ВОДАМИ ЗДАНИЙ И СООРУЖЕНИЙ Настоящая инструкция предназначена для проектирования защитных мероприятий от под-топления грунтовыми водами зданий и соору — жений в период строительства и эксплуатации. Вводится в действие с 1 октября 1978 года.

В работе изложены общие положения по проектированию защитных мероприятий и при-ведены сведения по типам применяемых дре-нажных устройотв, способам и мероприяти -ям по защите подтапливаемых территор и й, гидрогеологическим расчетам для их обосно -вания, а также требованиям к гидрогеологи -ческим исследованиям на подтопляемых тер -риториях.

Инструкция составлена в лаборатории фильтрационных расчетов отдела осущения института ВИОГЕМ М.А.Забейдой при участии В.Е.Анпилова (разд.7.Б) и Ю.В.Пономаренко (прил. 1 и 2).

1. ОБЩИЕ ПОЛОЖЕНИЯ

Область применения

1.1. Настоящая инструкция предназначена для проектирования защитных мероприятий от подтопления грун товыми водами зданий, сооружений и инженерных ком муникаций промышленных предприятий, построенных или строящихся на слабопроницаемых грунтах.

Примечание. При строительстве на хорошопроницаемых грунтах защитные мероприятия разрабатываются в соответствии с требованиями СНиП "Основания зданий и сооружений" и Временной инструкцией по проектированию осущения месторождений полезных ископаемых.

- 1.2. К слабопроницаемым грунтам относятся пес чано-глинистые разности горных пород, в том числе и лессовых, характеризующиеся незначительной водоотдачей (до 0,1) и коэффициентом фильтрации меньше 1-2 м/сут.
- 1.3. Значение фильтрационных параметров некоторых типов слабопроницаемых пород ориентировочно мож но принимать по табл. 1.1.

Таблица 1.1

Породы	Коэффициент фильтрации, м/сут	Коэффициент водоотдачи	Коэффици- ент уров- непровод- ности, м ² /сут		
Глины, плот ные мергели	0,01	0,01	•••		
Суглинки	0,10-0,01	0,01-0,05	15-50		
Супе с и	1,00-0,10	0,05-0,10	50-100		
Пески тонко- зернистые	0,50-5,00	0,10-0,15	-		

- 1.4. В настоящей инструкции под подтоплением территорий промплощадок понимается подъем уровня грунтовых вод, происходящий под влиянием источников действующих на самой площадке (утечки воды из водо не сущих коммуникаций и брызгальных бассейнов, изменение бытовых условий поверхностного и подземного стока, конденсации влаги под покрытиями и т.п.) и приводящий к нарушению нормальных условий строительст в а
 и эксплуатации зданий и сооружений, а также жизнецеятельности растений.
- 1.5. Защита зданий и сооружений от подтоп ле н и я грунтовыми водами осуществляется следующими спосо бами:
- а) выполнением наружной или внутренней гидроизо ляции;
 - б) устройством дренажей различного типа;
- в) выполнением различных профилактических (см. п. 3.4) и защитных (см. п. 4.6) мероприятий.

Примечание. Защита подземных частей зданий и сооружений с помощью гидроизоляции осуществляется в соответствии с требованиями отдельных глав (пунктов) СНиП на проектирование водоснабжения, наружных сетей и сооружений и ГОСТа 539-73.

Задачи проектирования защитных мероприятий

- 1.6. Проектирование защитных дренажных мероприятий на промплощадках осуществляется с целью
- а) поддержания уровня грунтовых вод на заданно й отметке:
- б) исключения развития коррозионных процессов в бетонных, железобетонных и других элементах сооружений:
 - в) сохранения несущих свойств грунтов оснований;
- г) обеспечения нормальных условий эксплуатации и фундаментов, подвалов, подземных частей зданий и со оружений, а также подземных коммуникаций.

Исходные данные для проектирования

- 1.7. Основными исходными данными для проектиро вания осущения являются следующие материалы:
 - а) техническое задание на проектирование дренажа;
 - б) генеральный план промплощадки;
- в) отчеты и заключения по проведенным инженерногеологическим и гидрогеологическим изысканиям;
- г) научные отчеты по выполненным тематическим исследованиям:
- д) проектная документация по заложению фундамен тов, подвалов и т.п.;
- е) проекты постоянных и временных подземных коммуникаций (водопровод, теплопровод, канализация, электросиловые, телефонные и другие кабели);
 - ж) проект вертикальной планировки промплощадки;
 - з) проектная документация на строительство дорог:
- и) сведения о ближайших песчаных и каменных карьерах с характеристикой получаемого в них материала;
- к) отчеты об эксплуатации предприятия, водопотреблении, уровне потерь технологических вод;
- л) заключение о прогнозе развития процесса подтопления.

При мечание. В зависимости от стадии проектирования объем исходной информации может быть изменен по согласованию с проектной организацией.

1.8. Задание на разработку проекта осущения сос - тавляется генеральной проектной организацией в соот - ветствии с заданием заказчика на проектирование все-го объекта (Министерство, комбинат, объединение и т.п.) при непосредственном участии организации, проектирующей осущение. В нем указываются основные ка - рактеристики проектируемого или защищаемого объек - та; основание для проектирования; основные направ - ления проектирования; плавные источники обеспечен и я предъявляемые заказчиком к осущению.

Примечание. В случае необходимости в за-

дании указываются основные источники обеспечения предприятия водой, теплом и газом.

2. ТИПЫ ДРЕНАЖНЫХ УСТРОЙСТВ И ОБЛАСТЬ ИХ ПРИМЕНЕНИЯ

2.1. Для защиты зданий и сооружений от подтоп - ления грунтовыми водами в период строительства (предварительно) и во время эксплуатации применяются го - ризонтальные, вертикальные и комбинированные дренажные устройства.

Примечание. Производство дренажных работ осуществляется в соответствии с положениями от дельных разделов (пунктов) РТМ-95.06.19-75. Проектирование дренажей промышленных площадок. Технические указания. М., ГИКП, 1974.

- 2.2. Горизонтальные дренажи по конструктив н ы м особенностям подразделяются на открытые дрены (ка навы, лотки), закрытые, трубчатые, галерейные, при стенные, пластовые и дрены, совмещенные с водостоками.
- 2.3. Вертикальные дрены по конструкции и осо бенностям работы подразделяются на водопонижающие, во – допоглощающие и восстающие скважины, забивные фильтры и трубчатые колодцы.
- 2.4. Комбинированные дренажи представляют собо й сочетание горизонтальных и вертикальных дренажных устройств. В частности, к комбинированным относятся лучевые дренажи (лучевые скважины).
- 2.5. Для усиления эффекта осушения слабопроница емых грунтов (ускорения темпов осущения, улучшен и я работы фильтров и т.д.) применяются специальные ме тоды водопонижения: вакуумирование и электроосущение.

Примечание. Электроосушение, как ме - тод интенсификации дренажа, следует применять тольк о при строительном водопонижении.

Горизонтальные дренажи

- 2.6. Открытые канавы проходятся на глубину 1,5 2,0 м и представляют собой простейший тип горизон-тального дренажа. Применяются они для понижен и я уровня грунтовых вод, а также для перехвата и организованного отвода поверхностных вод с защищаем о й территории.
- 2.7. Лотки представляют собой открытые канавы, откосы которых закреплены, глубина заложения лот ков 2,0-3,0 м. Назначение их то же, что и открыт ы х канав.
- 2.8. Закрытые дрены выполняются в траншеях, сплошь заполненных фильтрующим материалом (фаши-ны, каменная наброска и т.п.). Применяются они в основном для приема и отвода грунтовых вод.

Примечание. Проектирование дрен, указан — ных в пп. 2.6 - 2.8, производится в исключительных случаях, так как они неудобны (открытые канавки и лот - ки) или малонадежны (закрытые дрены) в эксплуата — ции.

- 2.9. Горизонтальные трубчатые дрены в конструк тивном отношении представляют собой траншеи, в ко-торых уложены дренажные трубы, а вокруг последних устроена фильтрующая обсыпка. Рекомендуемая туби на заложения трубчатых дрен 5-8 м.
- 2.10. Горизонтальные трубчатые дренажи могут быть выполнены в виде отдельных линейных дрен, системы дрен (систематический дренаж), кольцевых (контур ных) и сопутствующих дрен.
- 2.11. Отдельные линейные трубчатые дрены следу ет применять для защиты объектов, имеющих при ма лой их ширине значительные линейные размеры, как-то: тепловых или водопроводных сетей, подземных гале рей и т.п.
- 2.12. Системы горизонтальных дрен целесообраз н о применять вместо пластовых дренажей при защите от дельных объектов больших размеров в плане или для поддержания уровня подземных вод на заданной отмет-

- ке. Преимущество пластового или систематическо го дренажа определяется технико-экономическими расче тами.
- 2.13. Кольцевые дрены закладываются по конту ру защищаемого объекта или участка территории и мо- гут применяться как для дренирования подготавлива емой территории, так и для защиты существующих зданий и подземных сооружений.
- 2.14. Сопутствующие дрены являются разнов и д ностью трубчатых и отличаются от них тем, что укла-дываются в общей траншее с защищаемыми коммуни кациями. Применяются они в основном для защиты от грунтовых вод трубопроводов и других инженерных се тей или для перехвата утечек из них.
- 2.15. Водоприемная часть трубчатых дренажей выполняется из безнапорных асбестоцементных (ГОСТ 1839-72), водопроводных (ГОСТ 539-73), керами ческих дренажных (ГОСТ 8411-74), труб и трубофильтров.

Примечание. В агрессивных средах, поми - мо керамических дренажных, рекомендуется применять трубы из стеклопластика, стеклопластиковые фильтры, гибкие витые дренажные трубы из жесткого поливинил-хлорида.

- 2.16. В случае необходимости перфорация труб производится круглыми или щелевыми отверстиями с боков и в верхней части, нижняя часть (не более 1/3 по высоте) должна быть без отверстий. Минимальный диаметр труб следует назначать не менее 150 мм.
- 2.17. Для устройства фильтрующих обсыпок реко мендуется применять кварцевые пески, гравий и ще бень с содержанием пылеватых и глинистых частиц не более 3-5% по объему.

Состав фильтрующих обсыпок, количество слоев и их толщина зависят от типа дренируемого грунта и определяются расчетом.

2.18. Предельная глубина заложения труб, уклады - ваемых в фильтрующую обсыпку, ориентировочно определяется по табл. 2.1.

Примечание. В случае приложения допол -

Таблица 2.1

Грунты основания	Типы труб	Глубина заложения труб, м, при их внутреннем диаметре, мм							
		100 (100)*	150 (141)	200 (189)	250 (2 4 2)	300 (279)	400 (368)	500 (45 6)	600
Пески гравелистые, крупные и с редней	Бетонные Керамические	-	-	4,0	-	3,4	3,3	3,2	-
крупности, глины и суглинки полутвер- дые, туго-, мягко-	канализационные дренажные Асбестоцементные	- 4,0	7,3 3,5	5, 7 3,5	4, 7 3, 0	4, 9	3,7 -	3,6 -	3,0 -
и текучепластичные, супеси пластичные	водопроводные ВТ-3 ВТ-6 ВТ-9	9,9 11,9 20,8	4,9 9,3 16,9	3,9 8,4 14,9	3,4 6,8 12,3	3,2 6,6 12,6	3,1 6,7 12,4	3,0 6,4 12,6	- -
Пески мелкозернис- тые и пылеватые	Бетонные Керамические	-		4,1	_	3,6	3,4	3,4	-
	канализационные дренажные Асбестоцементные	- 4,1	7,6 3,6	5,9 3,7	4,9 3,1	5,1 -	3,9 -	3,7	3,1
	водопроводные ВТ-3 ВТ-6 ВТ-9	10,3 12,4 21,6	5,1 9,6 17,5	4,0 9,3 15,5	3,6 7,1 12,8	3,3 6,8 13,0	3,2 6,9 12,9	3,1 6,6 13,1	_ _ _

^{*}В скобках указан диаметр асбестоцементных труб.

нительной нагрузки на трубы и перфорации их стенок, глубину заложения можно принимать равной 0,7-0,9 предельной глубины заложения труб, указанной в табл.2.1.

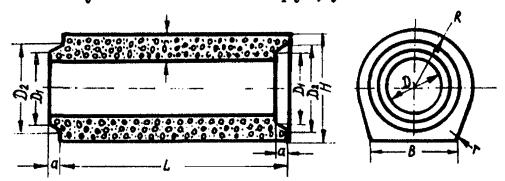


Рис. 1. Схема дренажного трубофильтра.

2.19. Типоразмеры трубофильтров, применяемых в качестве водоприемной части трубчатого дренажа, следует назначать согласно табл. 2.2 (рис.1).

Таблица 2.2

Ø	L	δ	Н	В	,D,	,D ₂	a	R	ષ્ટ
150	825 <u>+</u> 5	50	250	160	186	214	25	125	30
200	625 <u>+</u> 5	50	300	200	236	264	25	150	40

- 2.20. Галерейные дрены представляют собой подземные выработки (штольни, штреки и т.п.) проходного (высота 1,6-1,8 м) или полупроходного сечения (высота 0,9-1,2 м), закрепленные фильтрующей крепью или незакрепленные (в условиях устойчивых пород). При меняются галерейные подземные дрены в ответственных дренажных системах и на участках, где по условиям застройки нельзя осуществить проходку траншей открытым способом. В случае заложения галерейных дрен в слоистые грунты, в кровлю их закладывают с я восстающие скважины или забивные фильтры.
- 2.21. Пристенные дренажи являются разновидностью трубчатых и укладываются непосредственно с наружной стороны защищаемых сооружений. Их рекомендует с я

применять для защиты отдельных зданий, подошвы фун — даментов которых или подвалы нажодятся на водоупор — ных слоях, залегающих на глубине 5-8 м от поверхнос — ти.

2.22. Пластовый дренаж представляет собой фильт - рующую постель, укладываемую в основании защища - емого сооружения непосредственно на водоносный грунт и гидравлически связанную трубами или фильтрую щ им материалом с водоотводящей трубчатой дреной, уло - женной с наружной стороны фундаментов. Пластовы й дренаж устраивается по подошве фундаментов, подва - лов или сооружений независимо от глубины их заложения. Боковые поверхности стен защищаются от сырос - ти с помощью гидроизоляции или наслонных дренажей.

Этот тип дренажей следует также применять для защиты подземных сооружений с высоким температур — ным режимом, как-то: фундаментов коксовых батарей, боровов дымовых труб, мартеновских печей и т.п., в которых оклеечная гидроизоляция не может быть ис — пользована из-за высоких температур.

Вертикальные дренажи

2.23. Водопонижающие скважины применяются как для осущения безнапорных водоносных горизонтов, так и для снижения напоров в напорных пластах. Их следует использовать для водопонижения в двухслойных пластах, из которых нижний более водопроницаем. Применение их для дренирования слабопроницаемых грунт о в нецелесообразно.

Водопонижающие скважины бурятся с поверхност и земли или из подземных горных выработок и оборуду-ются фильтрами на дренируемый водоносный горизонт.

- 2.24. Водопоглощающие скважины применяются в том случае, если для приема дренируемых вод имеет ся поглощающий горизонт, водопроводимость которого, выше дренируемого горизонта. Сброс воды в песча ные коллекторы не рекомендуется.
 - 2.25. Восстающие скважины применяются для осу -

шения водоносных горизонтов, залегающих в кровле дре - нажной галереи, сооружаются вертикально или близко к вертикальному направлению в галереях (штреках) или в специальных нишах (камерах).

- 2.26. Забивные фильтры применяются для осущения водоносных горизонтов на расстоянии не более 10м от горной выработки (галереи и т.п.).
- 2.27. Водопонижающие колодцы применяются для непосредственного дренажа слабопроницаемых грунтов при заглублении защищаемого объекта до 5-8 м.
- 2.28. Лучевые дренажи представляют собой ком би нированный тип дренажа и состоят из водосборного ко-лодца и водоприемных лучей-фильтров, пробуренных го ризонтально или слабонаклонно в направлении защища емого объекта. Применяются они на действующих пред приятиях, где по условиям производства работ други е типы дренажей заложить невозможно.

Вакуумные дренажи

- 2.29. Вакуумное водопонижение выполняется при помощи вакуум-колодцев, сифонных, горизонтальных дренажей и лучевых дренажей.
- 2.30. Вакуумные колодцы представляют собой вер тикальные выработки (скважины) глубиной 5-8 м, спе циально подготовленные для оборудования вакуумным и насосами. Вакуум-колодцы рекомендуется применять при защите от подтопления подвальных помещений, полы которых выполнены из монолитного бетона или железобетона, т.е. являются герметичными.
- 2.31. Сифонные дренажи своеобразный тип комби нированных дренажей (водозабор осуществляется из вертикальных колодцев, а водоотвод с помощью сифо на). Их целесообразно применять при глубине уровня грунтовых вод, не превышающей 10-12 м.
- 2.32. При вакуумировании горизонтальных и луче вых дренажей дополнительно необходимо предусмотреть специальные устройства, позволяющие создавать ваку ум в полости дрен.

3. ПРОФИЛАКТИЧЕСКИЕ СПОСОБЫ ЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ ОТ ПОДТОПЛЕНИЯ ГРУНТОВЫМИ ВОДАМИ

- 3.1. Под профилактическими способами защиты понимаются мероприятия, направленные на предотвращени е подтопления территорий, зданий и сооружений грунтовыми водами или на их профилактическую защиту от вредного влияния вод.
- 3.2. Профилактические мероприятия выполняются, как правило, на вновь осваиваемых территориях или объек тах, находящихся в стадии строительства.
- 3.3. Профилактические мероприятия разрабатывают ся в основном с целью сохранения или улучшения условий стока поверхностных и грунтовых вод, сохранения или уменьшения величины инфильтрации поверхностных и производственных вод или с целью предупрежден и я прогнозируемого подтопления.
- 3.4. К профилактическим относятся следующие мероприятия:
 - а) организация стока поверхностных вод;
- б) сохранение или улучшение условий естественно го дренирования подземных вод;
- в) обеспечение тщательного выполнения строитель но-монтажных работ на водопотребляющих сооружения х и водопроводно-канализационных сетях и правильной их эксплуатации;
- г) устройство дренажей в основании подвалов и других подземных сооружений и коммуникаций.
- 3.5. Надлежащая организация стока поверхност н ы х вод достигается
- а) компоновкой генеральных планов и вертикальной планировкой застраиваемой территории;
- б) перехватом поверхностных вод, поступающих на защищаемую территорию с соседних участков;
- в) обеспечением свободного стока поверхност ны х вод непосредственно с защищаемой территории;
- г) соблюдением определенного порядка и правил при устройстве котлованов, траншей и других выемок.

- 3.6. Компоновка генерального плана промышлен но го предприятия должна исключать возможность поступ-ления воды в грунт из бассейнов, градирен, цехов и т.п.
- 3.7. Размещение зданий и сооружений на террито рии промплощадки должно производиться таким образом, чтобы максимально исключить зарегулирование сток а атмосферных осадков.
- 3.8. Заглубление зданий и сооружений необходимо предусматривать с таким расчетом, чтобы по возмож ности исключить барражирование потока грунтовых вод фундаментами.
- 3.9. Перехват поверхностных вод, поступающих на защищаемую территорию с верховой стороны, должен производиться с помощью головных дренажей (нагор ных канав, "ловчих" дрен и т.п.).

Если с верховой стороны территории движется также и лоток неглубоко залегающих подземных вод, то головной дренаж должен проектироваться с расчето м перехвата и подземных вод.

- 3.10. Перехват поверхностных и подземных вод, поступающих на защищаемую территорию с низовой стороны, производится с помощью береговых систем дренажа, конструкции и тип которых выбираются на основании технико-экономических сравнений в зависи мости от геолого-гидрогеологических условий.
- 3.11. Ускорение стока поверхностных вод непосредственно с защищаемой территории достигается с помощью
- а) устройства водоотводящих канав, кюветов, лот ков, водовыпусков и т.п.;
- б) вертикальной планировки территории, изоляции дневной поверхности и т.п.
- 3.12. Проектирование водоотводящих канав, кюветов, потков и т.п. должно проводиться с соблюдением тре бований отдельных глав (пунктов) СНиП на проектирование промышленного транспорта и автомобильных дорог.

- 3.13. К планировке территории предъявляются следу-ющие требования:
- а) планировка застраиваемой территории должна проектироваться с обеспечением быстрого стока поверхно стных вод:
- б) все поверхностные воды необходимо отводить с участка как в период строительства, так и в процессе эксплуатации через постоянно действующую ливнесточ ную сеть или непосредственно по спланированной по верхности;
- в) вертикальная планировка территории под одну от метку не допускается и производится по возмож ности с сохранением почвенно-растительного слоя.
- 3.14. Земляные работы по отрывке котлованов, вы емок и т.п. должны выполняться с соблюдением следу ющих требований:
- а) разработку котлованов и траншей под фундаменты и сооружения необходимо производить непосредст венно перед началом возведения последних, а работы нулевого цикла — выполнять ускоренными методами;
- б) котлованы и выемки следует ограждать неболь шими дамбами с целью исключения возможности затоп ления их поверхностными водами;
- в) непосредственно за возведением фундаментов и укладкой коммуникаций необходимо тщательно заделывать пазухи котлованов и траншей грунтом с устройством отмосток и немедленно отводить от зданий поверхност и ы е воды, предупреждая их застой.
- 3.15. Сохранение или улучшение условий естествен -ного дренирования подземных вод производится с цель ю
 предотвращения подпора подземных вод и достигается
- а) правильной организацией отвального хозяйства предприятия;
- б) расчисткой берегов естественных водоемов и водотоков, очисткой русел, оврагов и т.п.
- 3.16. Основные требования, предъявляемые к скла дированию отвалов, сводятся к следующему:
- а) место складирования отвалов должно выбираться с таким расчетом, чтобы они не нарушали сток поверх -

ностных вод и не ухудшали условий естественного дренирования подземных вод;

- б) материалы отвалов, укладываемых гидравлическим способом необходимо дренировать, а отработанные воды - отводить;
- в) в случае, если отвальное хозяйство может вызвать подпор подземных вод необходимо устройство искусственного дренажа.
- 3.17. Устройство и эксплуатация водопотреляющих и водозаборных сооружений, водопроводно-канализацион ных коммуникаций должны производиться в соответствии с требованиями отдельных глав СНиП на производство и приемку работ по водоснабжению, канализации и теплоснабжению, наружным сетям и сооружениям и исключать поступление воды в грунты.
- 3.18. Профилактическую защиту подземных част е й зданий и сооружений от грунтовых вод, а также пере хват возможных утечек воды необходимо осуществлять с помощью следующих Дренажных устройств: пластовых, пристенных, горизонтальных и вертикальных.

Примечание. В том случае, если по технологическим требованиям на защищаемом объекте недо – пустимо повышение влажности грунтов, следует преду – сматривать вентиляционные дренажи, представляющи е собой фильтрующие трубы, через которые продувает с я горячий или подогретый воздух.

- 4. МЕРОПРИЯТИЯ ПО ЗАЩИТЕ ЗДАНИЙ И СООРУЖЕНИЙ ОТ ГРУНТОВЫХ ВОД НА ПОДТОГЛЕННЫХ ТЕРРИТОРИЯХ
- 4.1. Мероприятия по защите зданий, сооружений и инженерных коммуникаций от грунтовых вод на подтопленных территориях выполняются о целью
- а) стабилизации уровня грунтовых вод, т.е. прекращения его дальнейшего подъема;
- б) защиты зданий, сооружений и инженерных ком муникаций от грунтовых вод.

- 4.2. Проектированию мероприятий по защите должно предшествовать обследование защищаемого объекта, выявление и количественная оценка источников его под топления.
- 4.3. Прекращение дальнейшего подъема уровня грунтовых вод, как правило, достигается
 - а) устранением угечек;
 - б) организацией стока поверхностных вод;
 - в) улучшением условий подземного стока;
 - г) устройством систематического дренажа.

Примечание. Мероприятия пп"б" и "в" выполняются в том случае, если они не были предусмотре — ны в период строительства или их невыполнение привело к развитию подтопления.

- 4.4. Устранение утечек из подземных водонесущ и х коммуникаций достигается надлежащей организацией работ соответствующих служб по эксплуатации водо про вода, канализации, теплосети и т.п. При этом а) сос тояние сетей во время эксплуатации должно соответ ствовать требованиям СНиП на производство и при емих работ по водоснабжению, канализации и теплоснаб жению, наружным сетям и сооружениям; б) эксплуата иня водонесущих устройств должна производиться в соответствии с требованиями "Правил технической экс плуатации водопроводов и канализации", М., Стройиз дат, 1965 и "Инструкции по борьбе с утечками и потерями воды на городских водопроводах", М., Стройиз дат, 1973.
- 4.5. Защита зданий, сооружений и коммуникаций от подтопления сводится к а) выполнению защитных ме роприятий (см. пп. 4.6) и б) устройству различных ти пов дренажей (см. пп. 4.7).

Примечание. Проектирование мероприят и й (п. 4.5а или 4.5б) обосновывается технико-экономичес-кими расчетами и возможностью их устройства.

- 4.6. Выполнение защитных мероприятий, как прави ло, должно проводиться строительными методами и сво-диться к
 - а) устранению повреждений в гидроизоляции;

- б) поднятию полов подвалов;
- в) упрочнению полов или уменьшению нагрузки на пол;
 - г) выносу подтопленных сетей на поверхность;
- д) устройству за фундаментом водонепроницае м о й оболочки;
 - е) устройству внутренней гидроизоляции.
- 4.7. Защита сооружений и инженерных коммуникаций путем осущения грунтов должна производиться с по мощью горизонтальных трубчатых (линейных, коль ц е вых, систематических), пристенных, пластовых, гале рейных, лучевых дренажей, вакуум-колодцев, водо по нижающих и водопоглющающих скважин.

5. РАСЧЕТЫ ДРЕНАЖЕЙ

5.1. Расчеты дренажей состоят из гидрогеологической и гидравлической частей и подбора фильтрующих обсыпок.

А. Гидрогеологические расчеты дренажей

- 5.2. Гидрогеологические расчеты дренажей заклю чаются в установлении положения сниженного уров н я грунтовых вод на участке их действия и в определе нии величны притока воды к дренам.
- 5.3. Гидрогеологические расчеты дренажей выпол няются методами гидрогеологической аналогии, водного баланса, аналитическим и моделирования.
- 5.4. Метод гидрогеологической аналогии применяется для приближенных расчетов и основывается на фак тических данных, полученных при осущении объек т о в, находящихся в аналогичных условиях.
- 5.5. Метод водного баланса применяется для определения общего притока воды к защищаемой террит о рии (площадке, участку) в районах с фиксированным и областями питания и разгрузки подземных вод. Как правило, он используется в сочетании с другими методами.

5.6. Аналитические методы расчета дренажей при - меняются в гидрогеологических условиях, приводимых к типовым расчетным схемам (неограниченный пласт, полуограниченный пласт, пласт-полоса, пласт-квадрант, пласт-круг и т.п.).

В сложных гидрогеологических условиях при неоднородном строении волоносной толщи применяется мо-делирование.

5.7. Понижение уровня воды в заданных контрольных точках дренируемой территории назначается из условия

$$S > h_{\varepsilon} + h_{\kappa} + h_{c}. \tag{1}$$

(Обозначения, принятые в формулах, см. в прил. 3).

5.8. Учитывая, что в слабопроницаемых грунтах радиусы действия дренажей редко превышают 25-30м, гидрогеологические расчеты их следует выполнять, как для неограниченных в плане пластов.

При четко выраженных, фиксированных границах расчеты дренажей необходимо производить с ислоль - зованием принципа суперпозиции.

5.9. Гидрогеологические расчеты дренажных уст - ройств, работающих в слабопроницаемых грунтах, вы - полняются с использованием решений, полученны х интегрированием уравнения, имеющего по данным опытных работ вид

$$\nabla^2 S - \frac{\Delta S}{T} = \frac{1}{b} \frac{\partial S}{\partial t} , \qquad (2)$$

где

— параметр, определяемый по данным по — левых опытных работ и обобщенно учитывающий до-полнительное поступление воды из капиллярной зоны и за счет сжатия грунтового скелета.

5.10. При отсутствии опытных данных ориентиро - вочные значения параметра α можно принять равны - ми $0.0024\frac{1}{\text{сут}}$ для суглинков, $0.0035\frac{1}{\text{сут}}$ для су - песей.

- 5.11. Для выполнения расчетов реальные контур ы кольцевых, пристенных и пластовых дренажей следует приводить к круглым в плане с радиусом z_0 , определяемым по формулам,
 - а) при соотношении сторон от 1:3 до 1:1

$$z_o = \sqrt{\frac{\mathcal{F}}{\pi}}; \tag{3}$$

б) при соотношении сторон 1:3

$$z_0 = \frac{p}{2\pi} . \tag{4}$$

Расчеты горизонтальных дренажей

Линейный дренаж

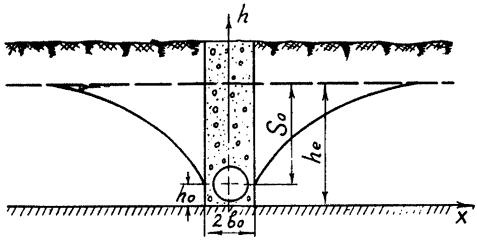


Рис. 2. Схема к расчету однолинейного горизонтального дренажа совершенного типа.

5.12. Понижение уровня грунтовых вод в зоне дей - ствия совершенного дренажа (рис.2) и единичный од - носторонний расход потока, поступающий к нему, опре-деляются по формулам

$$S(x,t) = S_0 \mathcal{F}_1(0,\bar{x}), \qquad (5)$$

$$q = T S_0 S_2(0, \gamma), \qquad (6)$$

$$0=\omega t$$
; $\gamma=\alpha t$; $\bar{\chi}=\frac{\chi}{\sqrt{\alpha t'}}$; $\omega'=\frac{\alpha}{B^{\alpha}}$; $B=\sqrt{\frac{T}{\alpha}}$.

Значения функций \mathcal{J}_{1} (\mathcal{O}_{1} , \mathcal{X}_{2}) и \mathcal{J}_{2} (\mathcal{O}_{1} , \mathcal{X}_{3}) бе рутся по графикам, представ ленным на рис. 3 и 4.

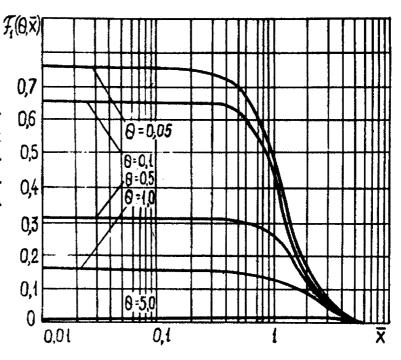
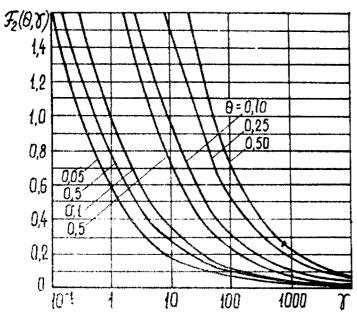



Рис. 3. График функции \mathcal{F}_{4} (\mathcal{B}_{7} \vec{X}).

5.13. Понижение уровня грунтовых вод в зоне дейст — вия несовершенно — го дренажа (рис.5) и единичный одно — сторонний расход потока, поступаю — щий к нему, /определяются по фор — мулам

Рис. 4. График функции $3_2(\theta, \gamma)$.

$$S(x.t) = \frac{S_o}{4 \frac{1}{\sqrt{18}}} \mathcal{F}_{i}(\theta, \overline{x}); \qquad (7)$$

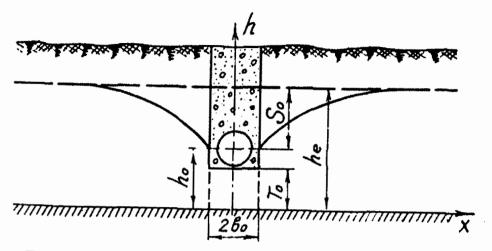
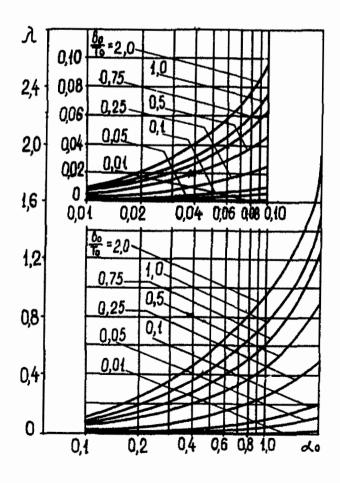



Рис. 5. Схема к расчету однолинейного горизонтального дренажа несовершенного типа.

$$q = S_0 T \lambda S_2(0, \gamma);$$

$$\lambda = \alpha_0 t h \alpha_0 S_0; B = \sqrt{\frac{T}{\alpha}}; \alpha_0 = \frac{1}{T_0}.$$
(8)

Значения функций $\mathcal{F}_1(\theta, \overline{X})$ и $\mathcal{F}_2(\theta, \gamma)$ берутся по графикам, изо раженным на рис. Зи 4, а \mathcal{N} - по графику на рис. 6.

Рис. 6. График для определения величины ${oldsymbol \lambda}$.

Двухлинейный (систематический) дренаж

- 5.14. Расчет двухлинейного дренажа состоит в определении понижения уровня грунтовых вод в наружной и внутренней зонах и притока к нему из этих зон.
- 5.15. Понижение уровня грунтовых вод в наруж но й зоне совершенного двухлинейного дренажа (рис.7) определяется по формуле (5), а единичный приток к дрена жу по формуле (6).

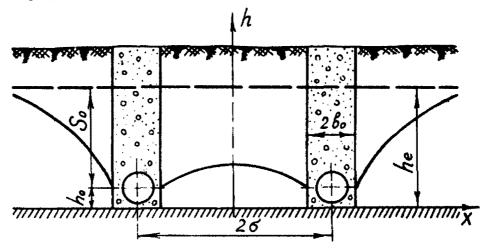
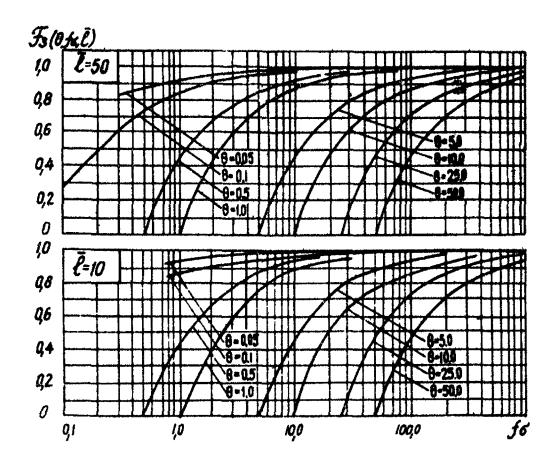


Рис.7. Схема к расчету двухлинейного горизонтального дренажа совершенного типа.

5.16. Понижение уровня грунтовых вод во внутрен - ней зоне совершенного двухлинейного дренажа опреде - ляется по зависимости

$$S(G,t) = S_0 \, \mathcal{F}_3 \left(\, \Theta \,, \, \mathcal{F}_6 \,, \, \bar{\ell} \, \right) \,,$$

$$\Theta = \mathcal{L}t \,; \quad \mathcal{F}_6 = \frac{\alpha t}{G^2} \,; \quad \bar{\ell} = \frac{G}{\delta_0} \,.$$


$$\tag{9}$$

Значения функции \mathcal{F}_{σ} (\mathcal{O} , \mathcal{F}_{σ} , $\bar{\ell}$) беругся по гра фику, данному на рис.8.

5.17. Единичный расход потока, поступающий к дре - нам из внутренней зоны совершенного двухли нейно г о дренажа,

$$q = TS_o \frac{G - b_o}{A} \mathcal{F}_{\!\scriptscriptstyle A}(0, f_{\!\scriptscriptstyle B}), \qquad (10)$$

$$\theta = \mathcal{L}t$$
; $f_{\beta} = \frac{\alpha t}{\beta}$; $\beta = 6b_0$.

Значения функции $J_4(\theta, J_6)$ приведены на графи - ке (рис.9).

- 5.18. Понижение уровня грунтовых вод в наружной зоне действия несовершенного двухлинейного дре на жа (рис.10) определяется по формуле (7), а единичный приток к дренажу из этой зоны по формуле (8).
- 5.19. Понижение уровня грунтовых вод во внутрен ней зоне несовершенного двухлинейного дренажа опре деляется из выражения

$$S(G,t) = S_0 \mathcal{F}_3 (\theta, f_G, \bar{\ell}),$$

$$\theta = \alpha t; \quad f_G = \frac{\alpha t}{G^2}; \quad \bar{\ell} = \frac{G^2}{D}; \quad \beta = \frac{G - B_0}{D} - G B_0. \quad (11)$$

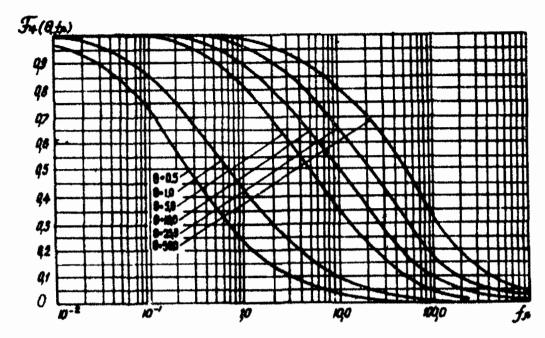


Рис. 9. График функции \mathcal{F}_{\bullet} (θ , \mathcal{F}_{θ}).

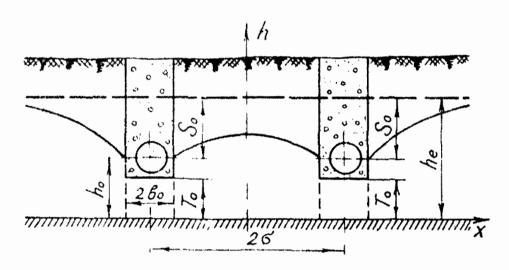


Рис.10. Схема к расчету двухлинейного горизонтального дренажа несовершенного типа.

Значения функций \mathcal{F}_{σ} (θ , f_{σ} , ℓ) и λ принимаются соответственно по графикам, представленным на рис. 8 и 6.

5.20. Единичный расход потока, поступающего к дре - нам из внутренней зоны несовершенного двухлиней ного дренажа,

$$q = TS_o \frac{\delta - b_o}{\beta} \mathcal{F}_{h} (0, f_b),$$

$$f_{\mathcal{S}} = \frac{at}{\beta}; \quad \beta = \frac{\delta - b}{\lambda} - \delta b_o.$$
(12)

Значения функции $\mathcal{F}_{4}(\theta, f_{3})$ принимаются по графику, данному на рис. 9.

Кольцевой дренаж

- 5.21. Расчет кольцевого дренажа состоит в опредепении понижения уровня грунтовых вод в наружной и внутренней зонах и притока воды к нему из этих зон.
- 5.22. Понижение уровня грунтовых вод в центре внутренней зоны совершенного кольцевого дренажа (рис. 11) определяется по зависимости

$$S(0,t) = S_0 \left[\frac{1}{J_0 \sqrt{\frac{g}{J_0}}} - J_5(\theta, J_0) \right],$$

$$\theta = a^t t \; ; \quad f_0 = \frac{at}{R_0^2} \; .$$
(13)

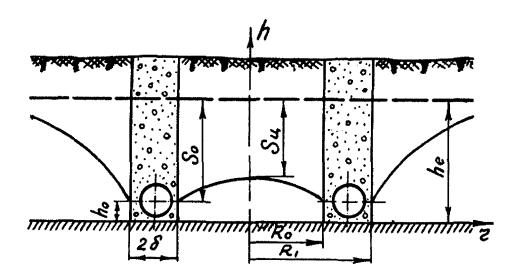
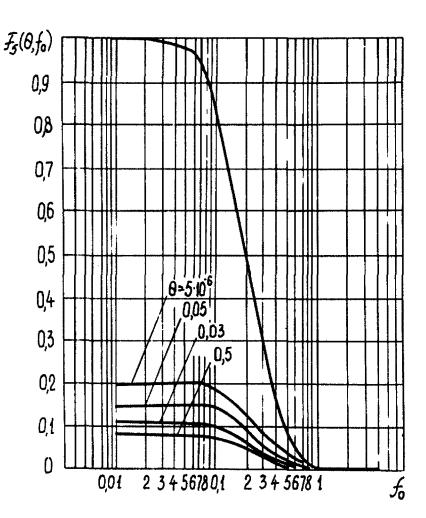
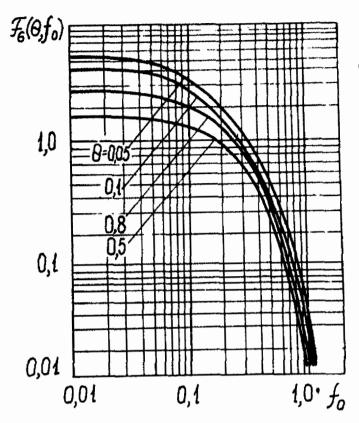



Рис. 11. Схема к расчету кольцевого горизонтального дренажа совершенного типа.

Значения функции \mathcal{F}_5 (θ , f_o) принимаются по графику, представленному на рис.12.

Рис. 12. График функции $J_{s}(\theta, f_{o})$.

5.23. Расход, поступающий к кольцевой совершенно й дрене с внутренней зоны,

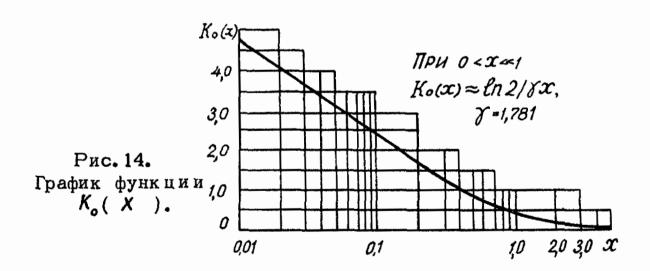

$$Q = 2\pi T S_o \frac{\sqrt{\frac{Q}{J_o}} I_o \sqrt{\frac{Q}{J_o}}}{\mathcal{I}_o \sqrt{\frac{Q}{J_o}}} - \mathcal{F}_o (\Theta, f_o) . \qquad (14)$$

Значения функции $\mathcal{F}_{s}(\theta, f_{o})$ принимаются по графику, данному на рис.13.

5.24. Понижение уровня грунтовых вод в наружной зоне действия совершенного кольцевого дренажа опре - деляется по формуле

$$S(z,t) = \frac{S_o W(u,z/B)}{2K_o(R_1/B)}.$$
 (15)

Значения функций $K_{o(A)}$ и W(U, T/B) принимаются соответственно по графикам, изображенным на рис. 14 и 15.


5.25. Расход, по ступающий к кольцевой совершенной дрене с наружной зоны,

$$Q = \frac{4\pi T S_o}{W(u_o, z/B)},$$

$$U_o = R_o^2/4\alpha t.$$

Значения функции $W(u_o, 2/B)$ при - нимаются по графику (см.рис.15), положив $u = u_o$.

Рис. 13. График функции 🧲 (8, 🎉).

Формулы (15) и (16) справедливы при условии $t \ge 5 B^2/a$.

5.26 Понижение уровня грунтовых вод при работе кольцевого несовершенного дренажа (рис. 16) определяется по формулам

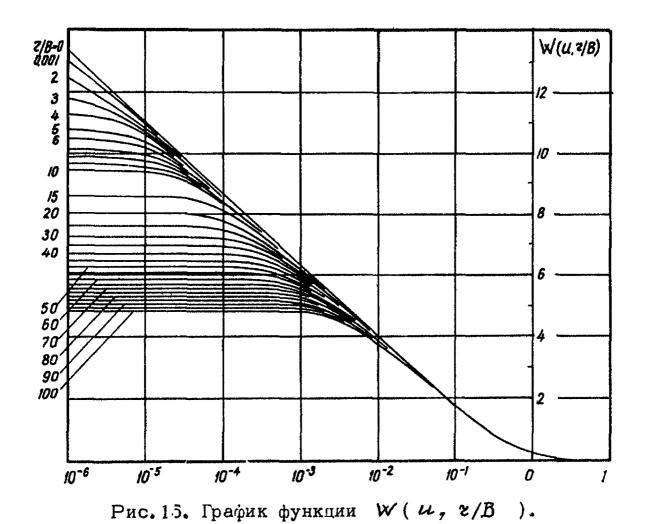


Рис. 16. Схема к расчету кольцевого горизонтального дренажа несовершенного типа.

а) в центре кольцевого Дренажа

$$\mathcal{S}(o,t) = \mathcal{S}_o \left[\frac{1}{I_o(R_o/B) - \frac{1}{AB} I_1(R_o/B)} - \mathcal{F}_f(v, f_o, B_i) \right]; \tag{17}$$

б) с наружной стороны кольцевого дренажа

$$S(z,t) = S_o \frac{W(u,z/B)}{2 K_o(R_4/B) + \frac{1}{\lambda B_i}}, \qquad (18)$$

$$V = R_o/B; \ f_o = \frac{\Delta t}{R_o^2}; \ B_i = AR_o; \ A = \alpha_o \frac{I_1(\alpha_o, \beta_o)}{I_o(\alpha_o, \beta_o)}.$$

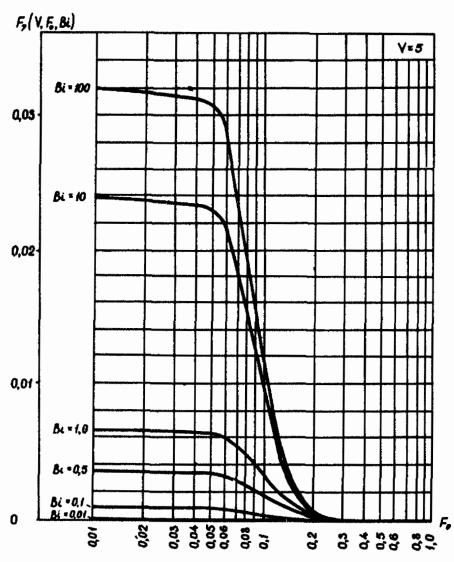


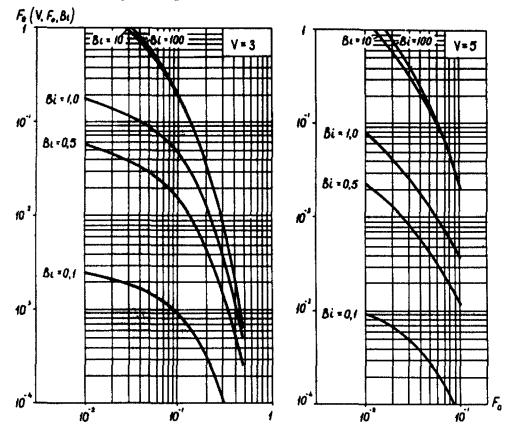
Рис. 17. График функции $\mathcal{F}_{r}(V, f_{o}, \mathcal{B}_{\ell})$.

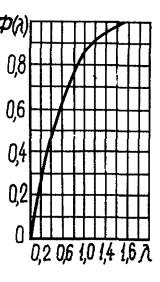
Значе — ния функций $f_7(V, f_a, B_i)$, $W(\mu, z/B)$ и $K_a(R_1/B)$ принимают — ся соответ — ственно по графикам, изображенным на рис. 17,15 и 14.

5.27.Приток, поступа ющий к коль цевому дре нажу из внутренней зоны, определяется по зависимости

$$Q = 2\pi T S_o \left[V \mathcal{I}_4(R_o/B) - \mathcal{F}_6(V, f_o, B_i) \right]. \tag{19}$$

Функция \mathcal{F}_{g} (V, f_{o} , β_{i}) принимается по граф и к у , представленному на рис. 18.




Рис.18. График функции $\mathcal{F}_{o}(V, f_{o}, B_{i})$.

5.28. Приток, поступающий к кольцевому несовершенному дренажу с наружной зоны,

$$Q = \frac{2\pi T S_o K_1(R_1/B)}{\sqrt{\pi f_o}} \left[e^{-\theta} + \sqrt{\theta} \exp(\theta) \right], \quad f_o = \frac{dt}{R_1^2} \cdot (20) \Phi(\lambda)$$

Значения интеграла вероятности егу Л определяются по графику, изо - браженному на рис. 19.

Рис. 19. График для определения интеграла вероятности.

5.29. Гидрогеологические расчеты пристенных дренажей выполняются по формулам для совершенных горизонтальных дрен.

Пластовый дренаж

- 5.30. Пластовые дренажи в плане по форме вылол нения постели подразделяются на одноленточные, двух ленточные и плошалные.
- 5.31. К площатным относятся пластовые дренажи, ширина которых соизмерима с их длиной.
- 5.32. В гидродинамическом отношении одноленточ ный пластовый дренаж аналогичен линейному несовер шенному горизонтальному дренажу и рассчитывает с я по формулам (7) и (8).
- 5.33. Дебит двухленточного пластового дренажа и понижение уровня грунтовых вод в зонах его дейст вия определяются по формулам расчета несовершенно го двухлинейного горизонтального дренажа (7), (8), (11) и (12).
- 5.34. Расчет площадного пластового дренажа про изводится следующим образом:
- а) по формуле (18) определяется понижение уров ня грунтовых вод в зоне действия дренажа;
- б) дебит площадного пластового дренажа складывается из дебита, поступающего к внешнему контуру дренажа и определяемого по формуле (20), и дебита, по ступающего через дно дренажа. Определение последнего производится по формуле

$$Q = \kappa F \Im. \tag{21}$$

Расчеты лучевых дренажей

5.35. Лучевые дренажи подразделяются на одиноч - ные и систему лучевых дренажей. При проектировании их рекомендуется следующий порядок расчета.

Одиночный лучевой дренаж

5.36. Система из лучевых горизонтальных скваж и н приводится к "большому колодцу", радиус которого приближенно определяется по формуле Сзилаги

$$R_{K} = \ell_{r} / \sqrt[N]{4} \tag{22}$$

или

$$R_{\kappa} = \sqrt{J/\pi} \ . \tag{23}$$

5.37. Приток к лучевому гидродинамически совер — шенному дренажу определяется по формуле "большо г о колодна"

$$Q_{\delta} = \frac{2 \sigma \epsilon T S_{o}}{\ell n R / R_{\kappa}} , \qquad (24)$$

$$R = R_{\kappa} + R_{\delta}$$
, $R_{\delta} = B = \sqrt{T/\alpha}$.

При этом понижение уровня в стволе лучевого дре - нажа принимается равным глубине задожения горизон - тальных скважин под уровень грунтовых вод.

5.38. Каждая горизонтальная скважина разбивается на несколько (п) участков, соответствующих по дли не первоначальной мощности дренируемого горизонта. Ре альные отрезки горизонтальных скважин заменяю т с я воображаемыми вертикальными скважинами, располага емыми в серединах указанных отрезков.

5.39. Дебит каждой воображаемой скважины дли н о й г определяется с учетом неравномерной нагрузки по длине лучевой скважины из соотношения

$$Q_{i} = \delta \frac{Q}{\sum_{i=1}^{p} \ell_{i}} \Delta \ell_{i} , \qquad (25)$$

где δ — коэффициент, учитывающий неравномер ность распределения притока по длине лучевой скважины (для случая n=10, прил. 1).

5.40. Понижение уровня подземных вод в произвольной точке пласта определяется методом суперпозиции

$$S = \frac{1}{4\pi T} \sum_{i=1}^{n} Q_i w(u, \rho/B), \qquad (26)$$

$$u = \rho^2/4\alpha t; \qquad \alpha = T/\mu.$$

Система лучевых дренажей

5.41. По формуле (24) определяется дебит каж до - го лучевого дренажа без учета их взаимодействия.

5.42. Расход всей системы дренажей подсчитывает - ся по формуле (24), но приведенный радиус вычисля - ется с учетом расположения их на защищаемом участке по зависимости (23).

5.43. Определяется коэффициент уменьшения расхо — да кустов горизонтальных скважин за счет их взаимо — действия по формуле

$$g = \frac{Q_{\partial}}{Q_1 + Q_2 + \ldots + Q_K} = \frac{Q_{\partial}}{\sum_{j=1}^K Q_j} , \qquad (27)$$

где Q; - расход каждого лучевого дренажа без учета их взаимодействия.

5.44. Дебит каждого взаимодействующего дренажа

$$\mathbf{Q}_{i}' = \mathcal{G} \; \mathbf{Q}_{i} \; . \tag{28}$$

5.45. Дальнейший расчет системы лучевых дре на - жей производится в соответствии с рекоменлация м и, изложенными в пп. 5.38-5.40.

5.46. В целях ускорения и повышения точности расчеты следует производить с использованием ЭЦВМ. Алгоритм на языке "Алгол-60" и программа для ЭЦВМ-БЭСМ-4М приведены в прил. 1.

Расчеты вертикальных дренажей

5.47. Понижение уровня грунтовых вод при работе скважины с постоянным дебитом определяется по фор муле

$$S = \frac{Q}{4\pi T} \quad \forall (u, z/\beta),$$

$$B = \sqrt{T/\alpha}; \quad u = z^2/4at; \quad a = \frac{T}{\mu_o^*};$$

$$\mu_o^* = \mu + \frac{a_o x h_e}{\mathcal{E}(1+\mathcal{E})}.$$
(29)

При
$$t \longrightarrow \infty$$
, $W(u, 2/B) = 2 K_o(2/B)$.

5.48. При работе скважины с постоянным пониже - нием, что характерно для поглощающих скважин, пони-жение уровня грунтовых вод в любой точке пласта

$$S(z,t) = S_0 \frac{W(u,z/B)}{2 \kappa_0(z_0/B)} . \tag{30}$$

Дебит поглощающей скважины

$$Q = \frac{4\pi T S_o}{W(u_o, 2/B)} \quad . \tag{31}$$

В формулах (30) и (31) $u = \frac{2^2}{4at}$; $u_0 = \frac{2^2}{4at}$, $z_0 - pадиус скважины. Эти формулы справедливы при <math>t \ge 5B^2/a$.

5.49. При установившемся режиме фильтрации по -- нижение уровня и дебит поглощаемой скважины опре-- деляются по соотношениям

$$S = S_o \frac{\kappa_o(2/B)}{\kappa_o(2/B)} , \qquad (32)$$

$$Q = \frac{2\pi T S_o}{\kappa_o(z_o/B)} \simeq \frac{2\pi T S_o}{\ell_H \frac{1,12B}{z_o}}.$$
 (33)

5.50. Расчет взаимодействующих водопонижающих скважин, работающих с постоянным дебитом (рис.20), определяется по формуле (29) с использованием ме тода суперпозиции.

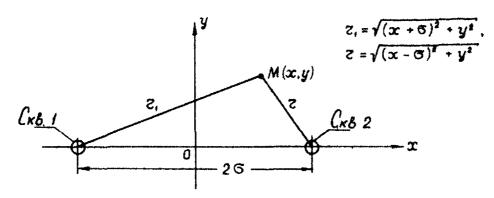


Рис.20. Схема к расчету двух взаимодействующих скважин, работающих в режиме постоянного понижения.

5.51. Расчет взаимодействующих скважин, работа - ющих в режиме постоянного понижения, выполняе т с я по следующим формулам:

a) при $t > 0.1 B^2/a$

$$S(z,t) = S_o \frac{W(u,z/B) + W(u,z,/B)}{2\left[K_o(z_o/B) + K_o(2o/B)\right]}; \qquad (34)$$

б) установившееся, т.е. максимальное, понижени е уровня грунтовых вод в заданной точке

$$S_{max}(X,y) = S_o \frac{K_o(2/B) + K_o(2/B)}{K_o(2/B) + K_o(2/B)}; \qquad (35)$$

в) установившееся снижение уровня между скважинами

$$S_{max}(G,0) = S_o \frac{K_o(G/B) + K_o(G/B)}{K_o(2G/B) + K_o(2G/B)}$$
(36)

Примечание. Формулы (34) - (36) получены для двух взаимодействующих скважин, но поскольку взаимовлияние в слабопроницаемых пластах незначи - тельно, то их можно применять при расчете любого числа поглощающих скважин.

Б. Гидраелические расчеты дренажей

- 5.52. Гидравлические расчеты горизонтальных дрена-жей включают
- а) подбор диаметра дренажных труб и коллекторов и степень их наполнения;
 - б) проверку скоростей течения;
- в) определение водоотводящей способности фильтрующих обсылок и постелей.
- 5.53. Подбор диаметра дренажных труб и коллекто ров и определение степени их наполнения следует про изводить, исходя из максимально возможного дебит а дренажа, характерного для начального этапа эксплуата ции.
- 5.54. Проверку максимальных и минимальных скоростей течения воды в трубах необходимо выполнять, исхо дя соответственно из максимальных и минимальных притоков воды к дренажам.
- 5.55. Скорость течения воды определяется по следу-ющим зависимостям:
 - а) в дренажных канавах и лотках

$$v = c \sqrt{R_r \mathcal{I}} ; \qquad (37)$$

б) в трубах при полном их наполнении

$$\mathcal{V} = \frac{c}{2} \sqrt{d\mathcal{I}} \quad . \tag{38}$$

Гидравлический радиус R_r определяется следующи мобразом:

а) для труб с полным наполнением

$$R_{r} = d_{r}/4 \; ; \tag{39}$$

б) для канав и лотков

$$R_{r} = \mathcal{Z}/P_{c} . \tag{40}$$

Коэффициент c, зависящий от шероховатости внут - ренней поверхности водоотводящих устройств, определя- ется по формуле

$$c = \frac{4}{7} R_r^{y} \quad , \tag{41}$$

$$y = 2.5\sqrt{7} - 0.13 - 0.75\sqrt{R_r} (\sqrt{7} - 0.1).$$
 (42)

5.56. Пропускная способность водоотводящих устройств

для труб
$$Q = 0.39 c d_c^{\frac{5}{2}} J^{\frac{1}{2}};$$
 (43)

для лотков и канав $Q = \mathcal{X} \mathcal{V}$. (44)

5.57. Глубину наполнения следует принимать в тру - бах-собирателях и пристенных дренах не менее 5-10%, в коллекторных трубах - не менее 40-50%.

5.58. Водоотводящая способность фильтрующих об сыпок и постелей определяется соотношениями

а) при ламинарном режиме фильтрации

$$Q = v\mathcal{F} = \kappa \, \mathcal{I}\mathcal{F}, \tag{45}$$

где ${m F}$ - площадь поперечного сечения водоотводяще - го слоя;

б) в условиях турбулентного режима фильтрации

при размерах окатанных частиц водоотводяще - го слоя от 1 до 6 см

$$Q = v \mathcal{F} = (20 - \frac{14}{2}) \, m \sqrt{2} \, \mathcal{F} \; ; \qquad (46)$$

при размерах частиц водоотводящего слоя от 1 до 5 см, представленного щебнем,

$$Q = \mathcal{V} \mathcal{F} = \left(20 - \frac{5}{\zeta_{40}}\right) m \sqrt{\zeta_{40} \mathcal{I}} \mathcal{F} . \tag{47}$$

В. Подбор фильтрующих обсыпок

5.59. Подбор фильтрующих обсыпок в горизонтальных дренажах и в фильтрах вертикальных дрен производ я т так, чтобы частицы дренируемого грунта не вымы в а -

лись, не кольматировали обсыпки, а трубы и фильт - ры не засорялись.

5.60. В суглинках и глинах (число пластичности $W_n \ge 7$) крупность первого слоя обсыпки следует подбирать по графику, изображенному на рис. 21, а, а в супесчаных грунтах (число пластичности $W_n = 3 + 6$)—по графику, приведенному на рис. 21, б.

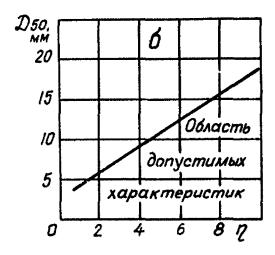


Рис.21. График для подбора первого слоя обсыпки:

- а) в глинистых грунтах (число плас тичности $W_n = 7$):
 - б) в супесях (число пластичности $W_n = 3 \div 6$).
- 5.61. При подборе грансостава коэффициент неод нородности материала обсыпки $p = \frac{d_{so}}{d_{so}}$ не долже н превышать 10.
- 5.62. Минимальная толщина каждого слоя обсы пки в горизонтальном дренаже по условиям производ ства работ не должна приниматься менее 0.15 м.
- 5.63. Подбор второго и третьего слоев обсыло к производится аналогичным образом, принимая первый слой обсыпки за дренируемый грунт.

Примечание. Введение второго слоя не является обязательным, если градиент фильтрацион - ного потока при выходе воды из первого слоя мень - ше допустимого или скорость потока на контакт е слоев меньше размывающей.

5.64. Подбор обсынок вертикальных дрен следует производить так, как указано в п. 5.60, используя для об сынок суффозионно-устойчивые грунты с коэффициент о м неоднородности не более 3-5.

6. ПРОГНОЗ ПОДТОПЛЕНИЯ

- 6.1. Подтопление зданий, сооружений и инженерны х коммуникаций определяется в основном двумя факторами:
 - а) геологическим строением промплощадки;
- б) величиной потерь вод, участвующих в технолог и-ческом процессе.

Скорость повышения уровня грунтовых вод, кроме того, зависит от климатических условий рассматриваемо й территории предприятия.

- 6.2. При прогнозировании изменения уровня грунт о вых вод следует учитывать наибольшую вероятность
- а) значительного повышения уровней там, где возводятся здания и сооружения с мокрым технологическим процессом, если в районе застройки или вблизи него устраиваются водоподпорные сооружения, и когда строительная площадка сложена слабопроницаемыми глинис тыми грунтами, а также пылеватыми пескамивне зави симости от глубины залегания водоупора;
- б) понижения уровней там, где на застраиваем о й или соседней территории выполняются мелиоратив н ы е осущительные мероприятия или проходятся под з е м н ы е выработки (тоннели, метро, горные подработки и др.).
- 6.3. Расчетное положение уровня грунтовых вод и возможность изменения влажности грунтов в процессе строительства и эксплуатации построенных зданий и сооружений следует принимать по результатам инженер но-геологических изысканий и специально выполненных прогнозов.
- 6.4. Величина изменившейся инфильтрации и скорость подъема уровней грунтовых вод по натурным данным для некоторых отраслей промышленности ориентировочно может быть принята по табл. 6.1.

Таблица 6.1.

Отрасль промышленности	Систе- ма во- доснаб- жения	Расход воды на 1 га терри- тории,	Величина инфиль — трации, м/сут	Скорость подъема уровней, м/год
Металлургическая (горно-обогати- тельные комбина- ты), энергетичес- кая, целлюлозно- бумажная	Обо - ротная, комби- ни р о - ван- ная	15000 – 80000	0,7-2,6 x x 10 ⁻⁴	0,5-1,0
Металлургическая, химическая, неф - техимическая	То же	5000- 15000	1.10-4	-

6.5. При прогнозе подтопления следует учитывать, что подъем уровня грунтовых вод выше дневной поверхности происходит в исключительных случаях. В естест венных условиях предельная глубина его залегания зависит от среднегодовой температуры воздуха и фриенти ровочно определяется по формуле В.А.Ковды

$$h_{Kp} = 170 + 8 t^{\circ}, CM.$$
 (47)

Предельная глубина залегания уровня грунтовых вод на застроенных территориях в основном определяе т с я глубиной заложения подземных коммуникаций, горизон тальных дренажей и т.п.

- 6.6. Прогноз повышения уровня грунтовых вод вы полняется методами матемагического моделирования, балансовым, аналогии и аналитическими расчетами.
- 6.7 Метод моделирования для прогноза подтопления следует применять в сложных гидрогеологических ус -

ловиях при наличии систематических и многолетних данных по режимным наблюдениям.

- 6.8. Прогноз повышения уровня грунтовых вод на действующем предприятии осуществляется по данным наблюдений за начавшимся подъемом уровня грунтовых вод.
- 6.9. Возможное повышение уровня грунтовых вод на вновь проектируемом предприятии прогнозируется мето дом аналогии.

Аналитические методы прогноза

6.10. Повышение уровня грунтовых вод под линейным в плане источником инфильтрации (водовод, траншея и т.п.) определяется по зависимости

$$H^{\frac{1}{2}} + h_0 H^2 = \frac{4 q^2 t}{\mathcal{J}_{\mu K}} \qquad (48)$$

Примечание. При инфильтрации в сухой грунт $h_o = 0$, а при незначительном повышении уровня по сравнению с первоначальным (1-5%) первым членом зависимости (48) можно пренебречь.

6.11. Повышение уровня грунтовых вод в серед и н е полосы усиленной инфильтрации следует определять по формуле H.H.Веригина

$$\Delta H^{2} = \frac{\omega}{K} \delta^{2} \left[\mathcal{F}(\lambda) - 1 \right] ; \qquad (49)$$

$$\Delta = \frac{\delta}{2\sqrt{at}} .$$

Значение функции $\mathcal{F}(\mathcal{A})$ определяется по кривой, изображенной на рис. 22.

Повышение уровня грунтовых вод на границе полосы усиленной инфильтрации определяется по формуле (49), в которой следует положить $\omega = 2 \omega$ и $\lambda = 2 \lambda$.

6.12. Повышение уровня грунтовых вод при неболь — ших размерах площади инфильтрации (градирня, брыз — гальный бассейн и т.п.), имеющей форму круга или приводимую к нему, определяется по зависимости

$$\Delta h^2 = \frac{\omega}{2 \sigma \kappa} \ln \frac{2.25 \alpha t}{z_s^2} . \tag{50}$$

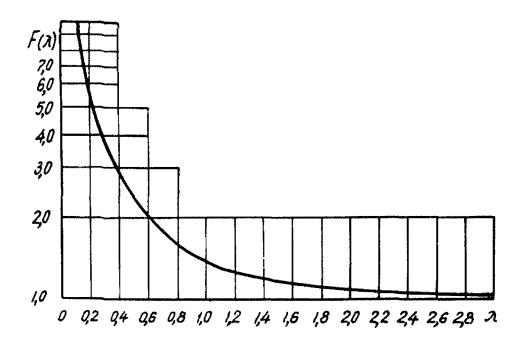


Рис.22. График зависимости $\mathcal{F}(\mathcal{A})$ от \mathcal{A} .

6.13. Если участок инфильтрации имеет форму круга и значительные размеры, то повышение уровня на кон-туре круга, в пределах которого происходит инфильтра-ция, определяется по соотношению

$$h_2^{*2} = h_4^{*2} - h_4^{2} + h_2^{2} . {(51)}$$

Положение уровня грунтовых вод на любой момент времени на контуре круга, в пределах которого проис - ходит инфильтрация, определяется по формуле

$$h_4^{*2} = h_4^2 + \frac{\omega}{\ell K} z^2. \tag{52}$$

6.14. Если поблизости участка усиленной инфильтрации имеется дрена (рис.23), то предельная мощ ность потока

$$h_{\text{max}}^{2} = h_{o}^{2} - \frac{\omega}{K} X^{2} + X \left[\frac{h_{e}^{2} - h_{o}^{2}}{X_{1}} + \frac{\omega_{o} X_{1}}{K} + 2 \frac{\omega - \omega_{o}}{K} \ell_{2}^{2} \right] - \frac{\omega - \omega_{o}}{K} \ell_{1}^{2}. \tag{53}$$

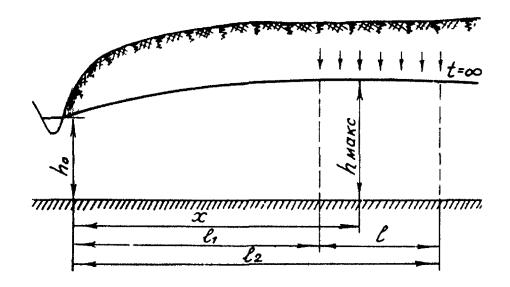


Рис. 23. Схема к расчету повышения уровня грунтовых вод во времени при усиленной инфильтрации на полосе, вытянутой вдоль дрены.

6.15. Изменение уровня грунтовых вод во времени в случае, указанном в п.6.13, определяется по соотноше - нию

$$h^2 = h_{max}^2 - 2 \frac{\omega}{K} atS , \qquad (54)$$

где S - сумма функций q

$$S = -q(\mathcal{A}_1) + q(\mathcal{A}_2) + q(\mathcal{A}_3) - q(\mathcal{A}_4).$$

Причем

$$\Lambda_4 = \frac{x - \ell_4}{2 a t}; \quad \Lambda_2 = \frac{x - \ell_2}{2 a t}; \quad \Lambda_3 = \frac{x + \ell_2}{2 a t}; \quad \Lambda_4 = \frac{x + \ell_4}{2 a t}.$$

В середине полосы
$$x = \frac{\ell_1 + \ell_2}{2}$$
.

6.16. Если инфильтрация происходит на всей терри - тории, ограниченной с двух сторон дренами или на междуречном массиве, то максимальное превышение уров - ня грунтовых вод над водоупором определяется по формуле Кене

$$\hat{h}_{max} = \hat{h}_{\partial}^2 + \frac{\omega}{K} \ell^2. \tag{55}$$

- 7. ГИДРОГЕОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ НА ПОДТОПЛЯЕМЫХ И ПОДТОПЛЕННЫХ ТЕРРИТОРИЯХ
- 7.1. Гидрогеологические исследования на подтопля емых и подтопленных территориях производятся с целью
- а) изучения гидрогеологических параметров водо носных горизонтов;
 - б) изучения режима и баланса грунтовых вод;
- в) выявления качественной и количественной оцен ки источников подтопления.
- 7.2. Гидрогеологические исследования на подтопля емых территориях следует производить с учетом поло жений СНиП "Инженерные изыскания для строитель ст-ва. Основные положения".

А. Изучение гидрогеологических параметров водоносных горизонтов

7.3. Изучение гидрогеологических параметров водо - носных горизонтов, как правило, должно производиться с помощью одиночных или кустовых откачек.

При отсутствии водоносного горизонта фильтрацион - ные свойства пород должны определяться наливами (зона аэрации, в пределах которой будет происходить подъем грунтовых вод) и лабораторными методами (водо - упорные слои).

7.4. Откачки из одиночных скважин следует преду - сматривать только для ориентировочных определе и й коэффициента фильтрации или водопроводимости пород.

Основные гидрогеологические параметры получают по результатам откачек из опытных кустов. Как правило, одиночные откачки должны выполняться во всех сква - жинах, используемых в будущем для режимных наблю - дений, но не менее 4-6 опытов на каждый водоносный горизонт.

- 7.5. Опыт ные кусты закладываются для опробования всех водоносных горизонтов, обводняющих территор ию промплощадки, в количестве не менее двух на каж дый водоносный горизонт.
- 7.6. Опытный куст состоит из центральной и несколь-ких (не менее двух наблюдательных скважин).

Первую наблюдательную скважину закладывают на расстоянии 2-3 м, а вторую - 8-10 м от центральной. Размещение наблюдательных скважин далее 15 м от центральной не рекомендуется.

- 7.7. Конструкция центральной скважины куста выбирается с таким расчетом, чтобы конечный диаметр фильтровой колонны труб был не менее 110 мм с однослойной обсыпкой толщиной не менее 50 мм. Минимальная длина фильтра в центральной скважине 4-5 м, но не менее 1/2 мощности водоносного горизонта, а для на блюдательных скважин 1-2 м. Длина отстойника в наблюдательных скважинах принимается равной 1,5-2 м.
- 7.8. Откачки из опытного куста производятся для определения закономерности изменения понижения уровня грунтовых вод во времени, коэффициентов фильтрации и уровнепроводности исследуемого водоносного горизонта, параметра Д или В и радиуса влиян и я откачки.
- 7.9. Откачку из центральной скважины опытного кус та следует производить на одно максимальное понижение. После откачки во всех скважинах ведутся наблюдения за восстановлением уровня воды до статического поло жения.
- 7.10. Величину понижения уровня воды в центральной скважине следует принимать равной примерно 30% от столба воды в центральной скважине.
 - 7.11. Продолжительность опытной откачки устанав -

ливается не менее 10-15 сут и контролируется путем построения графика зависимости понижения уровня воды в наблюдательных скважинах от логарифма времени.

7.12. После окончания откачек часть наблюдатель – ных скважин оставляется для проведения режимных наблюдений.

Б. Изучение режима и баланса грунтовых вод на подталливаемых территориях

7.13. Цель изучения режима и баланса грунтовы х вод на подтапливаемой промплощадке — выявление и количественная оценка источников подтопления здани й и сооружений для прогноза изменения режима грунто — вых вод и разработки мероприятий по предупреждению и защите объектов от подтопления.

Размещение и оборудование наблюдательной сети

- 7.14. Для изучения режима и баланса грунтовых вод на подтапливаемой промплощадке сооружается реж и м ная наблюдательная сеть. Размещение наблюдательных скважин осуществляется с учетом геологического строения, гидрогеологических условий промплощадки и расположения на ней зданий и сооружений, с учет о м положения источников питания грунтовых вод.
- 7.15. Наблюдательные скважины следует располагать по поперечникам вдоль потока грунтовых вод на рас стоянии 100-400 м друг от друга. На участке раз ме щения водонесущих сооружений (градирни, водоемы и т.д.) расстояние между наблюдательными скважинам и сокращают до 20-50 м.
- 7.16. Количество наблюдательных скважин режим ной сети устанавливается в зависимости от размер о в промплощадки, ее геолого-гидрогеологических усло-вий, характера и плотности застройки.
 - 7.17. Конструкция наблюдательной скважины дочж-

на обеспечивать использование измерительных прибо - ров (уровнемера, термометра, пробоотборника), надеж - ную изоляцию водоносного горизонта от попадания в него воды по затрубному пространству и предусмат - ривать оборудование скважины крышкой с замком. Ми - нимальный диаметр фильтра должен быть не мен е е 89 мм.

7.18. Выбор типа фильтров наблюдательных сква - жин, подбор номера сетки для них в зависимост и от литолог ии исследуемых пород необходимо производить с учетом "Рекомендации по изучению режима и балан-са грунтовых вод на подтапливаемых промышлен ны х площадках". М., ВОДГЕО, 1973.

Виды режимных наблюдений и их обработка

- 7.19. Режимные наблюдения на подтапливаемой территории должны включать изучение колебан и й уровня, температуры и химического состава грунто вых вод, водных и тепловых характеристик пород зоны аэрации.
- 7.20. Наблюдения за уровнем грунтовых вод по зволяют изучить изменения условий питания и раз грузки водоносного горизонта на промплощадке при строительстве и эксплуатации предприятий, определить гидрогеологические параметры водоносных пор од и элементы баланса грунтовых вод, дать количест в е н ную оценку источникам подтопления зданий и соор у жений.

Частота наблюдений за уровнем грунтовых вод должна быть в период снеготаяния, паводков, ливневы х дождей 1-2 раза в пятидневку, а в остальное время раз в 10 дней.

- 7.21. Наблюдения за температурой грунтовых вод производятся во всех наблюдательных скважинах. Они позволяют выявить места утечех горячих вод и определить их интенсивность.
- 7.22. Замеры температуры воды производятся за ленивленными термометрами одновременно с замера -

ми уровня с частотой один раз в 10 дней, а в местах утечек воды с высокой температурой и при больш и х амплитудах колебания — один раз в 5 дней. Размер интервалов измерения температуры по глубине при мощ — ности водоносного горизонта 10 м, а при большей мощности — 2-3 м.

- 7.23. Наблюдения за химическим составом грунто вых вод дают возможность изучить места утечек пром-стоков и масштабы их распространения на промплощадке по площади и глубине, агрессивность грунтовых вод и их влияние на подземные конструкции сооружений, а также способность выщелачивать или засолять грунты.
- 7.24. Для изучения химического состава грунтовы х вод вначале отбираются пробы из всех наблюдательных скважин для сокращенного химического анализа. На основании его результатов устанавливают места для изучения полного химического состава грунтовых вод.
- 7.25. Пробы воды для анализа следует отбирать в наблюдательных скважинах после удаления из них за грязненной или застоявшейся воды не реже четырех раз в год. Объем пробы 2,0 литра.
- 7.26. Отобранная проба воды должна иметь этикет ку, на которой указывается номер наблюдатель но й скважины, глубина взятия пробы, уровень грунто вы х вод, дата отбора и подпись наблюдателя.
- 7.27. Связь элементов водного баланса грунтов ы х вод с факторами подтопления устанавливается путем организации на промплощадке водно-балансовых участ-ков и проведения на них режимных наблюдений.

На водно-балансовых участках устраиваются

- а) наблюдательные скважины в количестве 3 штук (в створе по потоку) при одномерном в плане движении грунтовых вод или 5 штук в виде конверта при двухмерном потоке;
- б) пункты для наблюдений за температурным и влажностным режимами грунтов;
- в) метеорологический пост по наблюдению за осадками, испарением и давлением воздуха (при отсутст вии стационарной государственной сети).

- 7.28. Результаты режимных наблюдений на балансовом участке являются основой для определения или прогноза величины инфильтрационного питания грунтовых вод.
- 7.29. При обработке материалов наблюдений, проводимых на промилощадке за режимом уровня и темпе ратуры грунтовых вод, динамикой влажности, солевым
 и температурным режимами грунтов зоны аэрации, ру ководствуются методами, изложенными в "Рекоменда циях по изучению режима и баланса грунтовых вод на
 подтапливаемых промышленных площадках". М.,
 ВОДГЕО, 1973.

ПОРЯДОК ВЫПОЛНЕНИЯ РАСЧЕТА ЛУЧЕВЫХ ДРЕНАЖЕЙ НА ЭЦВМ-БЭСМ-4М

Расчет систем гидродинамически совершенных луче - вых дренажей на ЭЦВМ производится в соответствии с пунктами 5.36-5.45 настоящей инструкции. Применитель - но к индексации, принятой при составлении програм мы он сводится к последовательному выполнению следующих операций:

1. Определение общего дебита каждого лучевого дренажа производится по формулам

$$Q_{i} = \frac{2\pi T_{i} S_{i}}{\ln \frac{R_{i} + 2_{i}}{2i}} \qquad (i = 1, 2, 3, ..., K); \qquad (1)$$

$$z_i = \sqrt{F_i/\pi} \; ; \tag{2}$$

$$R_i = \sqrt{T_i/\alpha} , \qquad (3)$$

в которых Q_i - расход каждого лучевого дрен а ж а без учета их взаимодействия, м 3 /сут; S_i - снижение уровня грунтовых вод, принимаемое до отметки зало жения лучевых скважин, м; T_i - проводимость водо носного горизонта, м 2 /сут; F_i - площадь, ограничен ная положением в плане крайних лучевых скважин и ли ниями, соединяющими их забои, м2; г. - приведенный радиус лучевого дренажа, м2; R; - радиус контура пи тания, м; к - коэффициент фильтрации водоносных грунтов, определяемый по данным опытных откачек, м/сут; h_e - средняя мощность (или глубина грунтового по ка) до начала дренирования водоносного горизонта, м; с - обобщенный параметр, комплексно учитываю щ и й условия питания водоносных горизонтов, приуроченных к слабопроницаемым грунтам на застроенных территориях. При отсутствии опытных данных значения параметра принимаются для суглинков равными $0.0024 \frac{1}{\text{сут}}$; для супесей - $0.0035 \frac{1}{\text{сут}}$; К - число лучевых дренажей.

- 2. Вычисление дебита всей системы взаимодейст вующих дренажей также производится по формулам (1)—(3), при этом входящие в них параметры соответст венно определяются для всей системы лучевых дрена жей.
- 3. Коэффициент уменьшения дебита при взаимодей ствии дренажей определяется по формуле

$$G = \frac{Q_{c.o.}}{Q_4 + Q_2 + \ldots + Q_K} = \frac{Q_{c.o.}}{\frac{K}{\sum_{i=1}^{K} Q_i}}, \qquad (4)$$

где $Q_{c.o.}$ - дебит всей системы лучевых дренажей (по пункту 2).

4. Дебит каждого лучевого дренажа с учетом взаимодействия рассчитывается по соотношению

$$Q_i = Q_i G \qquad (i = 1, 2, \dots, \kappa). \tag{5}$$

5. Приток для каждого дренажа, приходящийся на 1 пог.м горизонтальной скважины, определяется по формуле

$$q_i = \frac{Q_i}{\frac{R_i}{l=1}} \ell_i$$
 $(j = 1, 2, ..., K)$, (6)

в которой $\sum \ell_i$ - суммарная длина лучевых скважин в одном дренаже, м; j - номер лучевого дренажа; n_j - число лучевых скважин в каждом j-ОМ дренаже.

6. Разбивка горизонтальной скважины на 10 равных отрезков длиной $\Delta \ell_i$ с заменой каждого из них вертикальной эквивалентной скважиной, расположенной в его середине.

При назначении дебита эквивалентной вертикальной скважины учитывалось, что приток на 1 пог.м с уда - лением от устья скважины увеличивается по завис и - мости, которая была аппроксимирована линейной функ- цией, на устье он принимался равным нулю, а на за- бое - 2 9.

В этом случае, считая от устья лучевой скважины, дебит эквивалентных вертикальных скважин соответ - ственно принимают равным

$$Q'_{i} = 0,1 \ Q_{j} \triangle \ell_{i} ,$$

$$Q'_{2} = 0,5 \ Q_{j} \triangle \ell_{i} ,$$

$$Q'_{3} = 0,5 \ Q_{j} \triangle \ell_{i} ,$$

$$Q'_{4} = 0,7 \ Q_{j} \triangle \ell_{i} , \qquad (j=1,2,3,...,\kappa)$$

$$Q'_{5} = 0,9 \ Q_{j} \triangle \ell_{i} , \qquad (i=1,2,3,...,\kappa)$$

$$Q'_{6} = 1,1 \ Q_{j} \triangle \ell_{i} ,$$

$$Q'_{7} = 1,3 \ Q_{j} \triangle \ell_{i} ,$$

$$Q'_{8} = 1,5 \ Q_{j} \triangle \ell_{i} ,$$

$$Q'_{9} = 1,7 \ Q_{j} \triangle \ell_{i} ,$$

$$Q'_{10} = 1,9 \ Q_{j} \triangle \ell_{i} .$$

$$Q'_{10} = 1,9 \ Q_{j} \triangle \ell_{i} .$$

7. Вычисление понижения уровня грунтовых вод в произвольной точке пласта при работе "к" лучевых дренажей выполняется по формуле

$$S = \frac{1}{4\pi T_{co}} \sum_{j=1}^{K} \sum_{l=1}^{n} \frac{10}{\lambda_{i-1}} Q_{j,l,n} W(u_{j,l,n}, \rho_{j,l,n}/B_{j}), \quad (8)$$

в которой
$$u_{j_1l,\lambda} = \frac{\mathcal{S}_{j,l,\lambda}}{4at}$$
, (9)

$$a = \frac{T_{c.o.}}{\mu} , \qquad (10)$$

где a — уровнепроводность дренируемого горизон — та, m^2 /сут; μ — водоотдача водоносных пород; t_i — время работы каждого лучевого дренажа, сут; Q_{λ} — дебит эквивалентных воображаемых скважин, m^3 /сут; $\rho_{i,t,\lambda}$ расстояние от каждой воображаемой скважины до точ — ки, в которой определяется понижение уровня, м; $w(w_{j,t,\lambda}; \rho_{j,t,\lambda}/\beta_j)$ — табулированная функция, графики которой приведены на рис.15.

Вычисления выполняются методом последовательных приближений для нескольких контрольных наиболее ха — рактерных точек осущаемой территории. Необходи м ы й дренажный эффект достигается путем увеличения чис — ла лучевых скважин. При достижении требуемого сни — жения уровней вод в заданных точках промплощад к и расчеты завершаются.

ПРОГРАММА ДЛЯ РАСЧЕТА СИСТЕМ ЛУЧЕВЫХ ДРЕНАЖЕЙ НА ЭЦВМ

```
1
      'BEGIN'
 2345678
         'INTEGER'K, N1, NO;
           P0042(K.N.NO): P1041(K.N1.NO):
          'BEGIN'
         'INTEGER'I, J, Л, Я;
           'INTEGER'I.J;
          'REAL'R.F1,Q1,L,L1,L2,A,S1,S2,S3,S4,S5;
      'REAL'TC.SC:
 9
         'REAL' ЧИСЛО:
10
         'REAL'C,C1,C2,C3,H1,H2, Ф,U,Z,W,N;
11
      'INTEGER' 'ARRA Y'N [O:K];
        'ARRAY'Q,F,X1,Y1,T1[1:K];
'ARRAY'Q2,P[1:K];
12
13
14
      'ARRA Y'T.S[1:K]:
           'ARRA y 'M, X2, y2 [1:N1];
15
16
             'ARRAY'X, Y[1:NO];
          'ARRA y' X3, y3, D[1:10]:
17
18
      'ARRAY'IN [1:4];
       PCO42(N,F, M,XI, Y1,X2, Y2,X, Y,T1);
POO42(T,S,L,L2);
19
20
    P0042(F1);
21
22
    P0042(TC,SC);
        P1024(2,N,F,M,X1,X1,X2, y2,X, y,T1);
23
    P1024(2,T,S,L,L2,F1,TC,SC);
24
     S1:=0; 'FOR'I:=1'STEP'1'UNTIL'K'DO'
25
26
    'BEGIN'
        C:=2x3.1415926xT[I]x S[I];
27
28
        R:=SQRT T[I]/L):
           C1:=SQRT(F[1]/3.1415926);
29
30
        C2:=LN((R+C1)/C1);
         Q[I] := C/C2
31
32
          S1:=S1+0 [I
33
          'END'; C3:=SQRT(F1/3.1415926);
34
          C:=2x3.1415926xTCxSC;
35
36
    R := SQRT(TC/L.);
     Q1:=C/LN((R+C3)/C3);
37
     L1:=Q1/S1:
          'FOR'J:=1'STEP'1'UNTIL'K'DO'
38
39
      Q2[J]:=Q[J]x L1:
```

```
40
       P1041(Q2):
             'FOR'S:=1'STEP'1'UNTIL'NO'DO'
41
42
            'BEGIN'
43
         S3:=0:P1041(9);
       'FOR'J:=1'STEP'1'UNTIL'K'DO'
44
45
      'BEGIN'
46
         A := T[J]/L2;
            R:=SQRT(T[J]^{\prime}L);
47
             32:=0; 'FOR'I:=N[J-1]+1'STEP'1'UNTIL'N[J]'DO.
48
49
        S2:=S2+M[I];P[J]:=.Q2[J]/S2;
50
       'FOR'I:=N[J-1] + 1'STEP'1'UNTIL'N[J]'DO'
51
        'BEGIN'
52
53
54
55
57
         C2:=M[I]/10
         4.1C/IO:=0.05
           'FOR'IJ:=1'STEP'1'UNTIL'10'DO'
           'BEGIN'
         D[IJ] := \text{MICHO}_{\mathbf{X}} 2\mathbf{x} P[J] \mathbf{x} C2;
          58
            'END'
59
          H1:=(X1[J]-X2[I])/20:
60
          H2:=(y1[J]-y2[I])/20;
61
       X3 1 := X2[I] + H1;
             y3[1] := y2[I] + H2;
62
63
             'FOR' /:=1'STEP'1'UNTIL'9'DO'
64
             'BEGIN'
65
66
         X3[4+1] := X3[4] + 2xH1;
        y_3 [/1+1] := y_3 [/1] + 2xH2
         'END': 'FOR'Λ:= 1'STEP'1'UNTIL'10'D0
67
68
            'BEGIN'
         Φ:=SQRT((X3[Λ]-X[Я])+2+(У3[Λ]-Y[Я])+2);
69
70
       U := \Phi \frac{1}{2} (4xAxT1[J]):
71
         S4 := \Phi \uparrow 2/(4xR \uparrow 2);
      IN[1] := U; IN[2] := 50; IN[3] := 0.1; IN[4] := 0.000001;
72
      H:=P0655(Z,W,IN[1], 91, 92); 'GO TO'93;
73
         91:V:=(1/2) \times EXP (-Z-S4/2): 92::
74
75
            93:
76
       S3:=S3-D[11 - 1]x H;
77
            'END'; 'END'; 'END'; S5:=S3/(4x3.1415926xTC);
          P1041(S5)
78
79
       'END'
80
       'END'; 'END';
```

Обозначения, принятые в формулах

коэффициент уровнепроводности, м²/сут; a, a* d_{y} - коэффициент уплотнения, см²/кгс; d_{z} - ширина полосы инфильтрации, м; d_{z} - диаметр труб, м; d_{z} - действующий диаметр частиц, мен действующий диаметр частиц, меньше кото рых в грунте имеется 10% по массе, мм; диаметр частиц, меньше которых в грунте имеется 60% по массе, мм; интеграл вероятности; коэффициент пористости; площадь дренажа, M^2 ; площадь, ограниченная ломаной линией, проходящей через концы горизонтальных сква повышение уровня грунтовых вод за время tот начала процесса, м; h_a - мощность водоносного пласта перед началом инфильтрации, м; h, - мощность грунтового потока на урезе реки (дрены), м; $h_{\rm e}$ - глубина потока до усиления инфильтрации на расстоянии х от берега реки, м; превышение над водоупором уровня воды на контуре круга в момент времени t_i и t_j , м; то же, в центре круга, м; амплитуда сезонного колебания уровня грун товых вод, м; высота капиллярного поднятия воды в грунтах, величина заглубления защищаемого объекта под уровень грунтовых вод, м; I. - модифицированная функция Бесселя первого рода нулевого порядка; I₄ - модифицированная функция Бесселя первого

рода, первого порядка;

J уклон потока грунтовых вод, гидравлический уклон; Jo функция Бесселя первого рода, нулевого порядка; коэффициент фильтрации, м/сут; K K_a моцифицированная функция Бесселя второго рода нулевого порядка; модифицированная функция Бесселя второго рода, первого порядка; коэффициент шероховатости; половина расстояния между дренами, м; расстояния от дрены (реки) до контуров полосы инфильтрации, м; длина горизонтальных скважин, м; пористость; упругая водоотдача; водоотдача; M количество горизонтальных скважин; n оператор Лапласа; периметр, м; смоченный периметр, м; единичный односторонний расход потока, M^2/cyr ; радиус влияния, м; гидравлический радиус, м; радиус большого кольца, м; радиус круга, м; радиус участка, на котором происходит инфильтрация, м: расстояние от воображаемой скважины до расчетной точки, м; понижение уровня грунтовых вод, м; понижение уровня грунтовых вод в дрене, M; водопроводимость пласта, м2/сут; время, сут; функция скважины с учетом перетекания; инфильтрация на единицу поверхности грунтовых вод в единицу времени; инфильтрация в бытовых условиях;

площадь живого сечения. м2.

СОДЕРЖАНИЕ

1.	Общие положения	3
	Область применения	3
	Задачи проектирования защитных мероприятий	4
	Исходные данные для проектирования	5
2.	Типы дренажных устройств и область их	
	применения	6
	Горизонтальные дренажи	7
	Вертикальные дренажи	11
	Вакуумные дренажи	12
3.	Профилактические способы защиты зданий и	
	сооружений от подтопления грунтовыми водами .	13
4.	Мероприятия по защите зданий и сооружений от	
	грунтовых вод на подтопленных территориях	16
5.	Расчеты дренажей	18
	А. Гидрогеологические расчеты дренажей	18
	Расчеты горизонтальных дренажей	20
	Расчеты лучевых дренажей	32
	Расчеты вертикальных дренажей	34
	Б. Гидравлические расчеты дренажей	37
	В. Подбор фильтрующих обсылок	38
	D. HOGOOD WAIDIPYOURA OOCBIION.	00
6.	Прогноз подтопления	40
	Аналитические методы прогноза	42
7.	Гидрогологические исследования на подтопля-	
•	емых и подтопленных территориях	45
	А. Изучение гидрогеологических параметров	70
	•	45
	водоносных горизонтов	40
	Б. Изучение режима и баланса грунтовых вод	A ***
	на подтапливаемых территориях	47
	Размещение и оборудование наблюдательной	
	Сети	47
	Виды режимных наблюдений и их	
	обработка	48

Приложения

ı.	Порядок выполнения расчета лучевых дренажей на ЭЦВМ-БЭСМ-4М	51
2.	Программа для расчета систем лучевых дре - нажей на ЭЦВМ	55
3.	Обозначения, принятые в формулах	57

ВРЕМЕННАЯ ИНСТРУКЦИЯ

ПО ПРОЕКТИРОВАНИЮ ЗАЩИТНЫХ МЕРОПРИЯТИЙ ОТ ПОДТОПЛЕНИЯ ГРУНТОВЫМИ ВОДАМИ ЗДАНИЙ И СООРУЖЕНИЙ

Научный редактор канд. техн. наук Ю.В. Пономаренко

Литературный редактор Л.А.Порубай Технический редактор А.Г.Воронцова Корректор Л.Н.Склярова. Художник В.А.Выродов.

Подписано к печати 31 августа 1978 г. Объем 2,8 уч.-изл.л. Тираж 500 экз. Заказ № 432. Ротапринт ВИОГЕМ, г.Белгород, ул.Б.Хмельницкого, 86. Цена 40 кол.