СИСТЕМА ВЕДОМСТВЕННЫХ НОРМАТИВНЫХ ДОКУМЕНТОВ ПО СТРОИТЕЛЬСТВУ, ПРОЕКТИРОВАНИЮ И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ
нормы
ПО ПРОЕКТИРОВАНИЮ, УСТРОЙСТВУ
и эксплуатации молниезащиты объектов военной
ИНФРАСТРУКТУРЫ
<u>ВСП 22 - 02 - 07</u> МО РФ
Издание официальное
Москва 2007

НОРМЫ ПО ПРОЕКТИРОВАНИЮ, УСТРОЙСТВУ И ЭКСПЛУАТАЦИИ МОЛНИЕЗАЩИТЫ ОБЪЕКТОВ ВОЕННОЙ ИНФРАСТРУКТУРЫ

<u>ВСП 22 - 02 - 07</u> МО РФ

УТВЕРЖДЕНО ЗАМЕСТИТЕЛЕМ НАЧАЛЬНИКА СТРОИТЕЛЬСТВА И РАСКВАРТИРОВАНИЯ ВОЙСК МО РФ «07» сентября 2007г.

Издание официальное

Предисловие

1 РАЗРАБОТАНЫ научно-исследовательским центром 26 Центрального научноисследовательского института МО РФ, Военным инженерно-техническим университетом с использованием материалов Научно-производственного предприятия «Эра» и войсковой части 74889

- 2 ВНЕСЕНЫ Военно-научным комитетом Службы расквартирования и обустройства МО РФ
- 3 УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ начальником службы расквартирования и обустройства Министерства обороны Российской Федерации

от "07" сентября 2007г.

- 4 В настоящих нормах реализованы требования Приказа МО РФ от 23.11.2001г. №425 и Решения Заместителя начальника строительства и расквартирования войск МО РФ от 11.01.2006г №156/2/1/103
- 5 Нормы гармонизированы с общероссийскими нормативными документами по молниезащите, стандартами по молниезащите Международной электротехнической комиссии (МЭК), Ведомственными строительными нормами ВСН 21-01-98/МО РФ, Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок (ПОТ РМ-016-2001), Правилами устройства электроустановок (ПУЭ)
- 6 ВЗАМЕН «Норм по проектированию, устройству и эксплуатации молниезащиты специальных объектов Министерства обороны Российской федерации» (ВСН 22-02-98/МО РФ)

Содержание

	τp.
Введение	
1 Общие положения	1
1.1 Область применения	. 1
1.2 Нормативные ссылки	. 2
1.3 Термины, определения и сокращения	. 3
1.4 Классификация объектов военной инфраструктуры МО РФ	
по категориям молниезащиты	9
1.5 Параметры разрядов молнии	14
1.6 Выбор эффективности внешней молниезащитной системы для объекта заданной	Í
категории	15
2 Защита объектов военной инфраструктуры от прямого удара молнии	16
2.1 Требования к защите объектов военной инфраструктуры	
от прямого удара молнии	16
2.2 Выбор внешней молниезащитной системы	
2.3 Отдельно стоящие молниеотводы	
2.4 Молниезащита зданий (сооружений) высотой до 60м	36
2.5 Защита от разрядов молнии специальных фортификационных сооружений	
2.6 Молниезащита объектов арсеналов, баз и складов ракет и боеприпасов	
3 Требования к конструктивному выполнению внешней молниезащитной системы	
4 Защита объектов военной инфраструктуры от вторичных проявлений разрядов	
молнии	53
4.1 Общие положения	53
4.2 Зонирование и электромагнитное экранирование	
4.3 Система уравнивания потенциалов	
4.4 Заземление	
5 Защита вводимых в сооружения инженерных коммуникаций	
и подключенных к ним технических средств	65
6 Порядок разработки документации и приемки в эксплуатацию молниезащитной	-
системы	70
6.1 Объем и содержание технической и эксплуатационной документации	

<u>ВСП 22 - 02 - 07</u> МО РФ

6.2 Порядок приемки в эксплуатацию устройств молниезащиты	71
7 Контроль состояния молниезащитной системы	72
7.1 Эксплуатация молниезащитной системы объектов	72
7.2 Организация контроля состояния молниезащитной системы	75
Приложение А (справочное) Молния и ее воздействие на поражаемые объекты	78
Приложение Б (рекомендуемое) Параметры разрядов молнии	81
Приложение В (рекомендуемое) Грозопоражаемость зданий и сооружений	
и интенсивность грозовой деятельности	86
Приложение Г (справочное) Типовые решения по защите от прямых ударов молнии	
зданий и сооружений	92
Приложение Д.1 (справочное) Конструкции заземлителей молниеотводов	
и их сопротивление заземления	120
Приложение Д.2 (рекомендуемое) Контроль системы заземления молниезащиты	130
Приложение Д.3 (обязательное) Эксплуатационно-техническая документация	
системы молниезащиты	143
Приложение Д.4 (обязательное) Предупреждающие плакаты молниезащитой системы	15 6
Приложение Е (справочное) Пример расчета молниезащитной	
системы хранилища боеприпасов	157
Библиография	167

Введение

«Нормы по проектированию, устройству и эксплуатации молниезащиты объектов военной инфраструктуры» (далее Нормы) разработаны взамен ВСН 22-02-98/МО РФ [1], которые введены в действие в 1998 году.

Необходимость переработки ВСН 22-02-98/МО РФ обусловлена новыми данными о взрывах и пожарах на объектах МО, сопровождающихся большим материальным ущербом и человеческими жертвами, новыми экспериментальными данными по надежности молниезащиты эксплуатируемых и вновь проектируемых сооружений, полученными в МО за последние пять лет, а также публикацией новых отечественных и зарубежных стандартов по молниезащите [3,4,5].

Нормы содержат требования по защите от прямых ударов молнии и ее вторичных проявлений, а также методы реализации этой защиты на объектах военной инфраструктуры.

Нормы предназначены для использования при разработке проектов и реконструкции (расширении) объектов военной инфраструктуры МО РФ.

В основу расчета и выбора зон защиты зданий и сооружений положен угол защиты α . Значения угла защиты α , обеспечивающие требуемую эффективность защиты от прямых ударов молнии (ПУМ), получены в результате общирных крупномасштабных испытаний в длинных (более 10м) искровых промежутках отдельно стоящих молниеотводов (стержневых и тросовых) и стержневых молниеотводов, установленных непосредственно на сооружении.

Представленная в Нормах методика объединяет наиболее жесткие требования к определению параметров молниезащитных устройств, изложенные в стандартах по молниезащите МЭК и Инструкции по молниезащите [3,4,5].

Ужесточены требования по защите от ПУМ объектов отдельно стоящими молниеотводами, уменьшены допустимые расстояния между стержневыми молниеотводами. Нормы дополнены требованиями к молниеотводам, устанавливаемым непосредственно на зданиях (сооружениях) высотой до 60м.

В Нормы включены положения по защите от вторичных проявлений разрядов молнии, грозовых перенапряжений (токов) в воздушных и кабельных линиях связи и

электроснабжения с учетом требований военного стандарта ГОСТ РВ 20.39.308-98.

Нормы не распространяются на высокие (более 60м) здания и сооружения, молниезащита которых выполняется по специальным проектам, а при соответствующем обосновании по требованиям [3, 4, 5, 6].

В приложениях даны материалы по параметрам разрядов молнии, грозопоражаемости объектов МО, практические рекомендации по молниезащите объектов военной инфраструктуры, примеры расчета и выбора молниезащиты зданий и сооружений.

Нормы рассчитаны на инженерно-технический персонал, занимающийся проектированием, устройством и эксплуатацией молниезащиты объектов военной инфраструктуры.

В разработке Норм принимали участие кандидаты технических наук: Куприенко В.М. (руководитель разработки), Акомелков Г.А., Деметриадес Г.И., Хлапов А.В.; инженеры: Григорьев А.А., Орехов Н.М., Романцов В.Н., Тихомиров В.П. (НИЦ 26 ЦНИИ); д.т.н. Фоминич Э.Н., к.т.н. Хромов В.В., (ВИТУ); к.т.н. Кадзов Г.Д. (СПбГТУ); д.т.н. Никифоров М.Г., к.т.н. Бобиков В.Е. (ВЭИ им. В.И. Ленина).

ВЕДОМСТВЕННЫЙ СВОД ПРАВИЛ

НОРМЫ ПО ПРОЕКТИРОВАНИЮ, УСТРОЙСТВУ И ЭКСПЛУАТАЦИИ МОЛНИЕЗАЩИТЫ ОБЪЕКТОВ ВОЕННОЙ ИНФРАСТРУКТУРЫ

Дата введения – 2007-09-07

1 Общие положения

1.1 Область применения

- 1.1.1 Требования настоящих «Норм по проектированию, устройству и эксплуатации молниезащиты объектов военной инфраструктуры» (далее Нормы) распространяются на вновь стоящиеся, реконструируемые и расширяемые объекты военной инфраструктуры.
- 1.1.2 Нормы предназначены для использования при разработке проектов, строительстве, эксплуатации и реконструкции объектов военной инфраструктуры.
- 1.1.3 Тип и размещение устройств молниезащиты выбираются на стадии проектирования нового объекта или обследования реконструируемого, чтобы максимально использовать имеющиеся молниеотводы и проводящие конструкции объекта.
- 1.1.4 При реконструкции (капитальном ремонте) объекта обязательным является новизна проекта молниезащиты с учетом требований настоящих Норм. В эксплуатационную документацию систем молниезащиты должны быть внесены соответствующие изменения и дополнения, обеспечивающие выполнение требований настоящих Норм.
- 1.1.5 Нормы не распространяются на проектирование и устройство молниезащиты линий электропередачи и связи, электрической части электрических станций и подстаний.
- 1.1.6 Молниезащита объектов ВМФ, ВКС, ВВС, хранилищ топлив и нефтепродуктов осуществляется в соответствии с требованиями собственных ведомственных норм и правил.

- 1.1.7 Нормы не рассматривают вопросы молниестойкости, которая характеризует свойства образцов вооружения и военной техники (ВВТ) сохранять свои функции и параметры (быть безотказными) во время и после непосредственного воздействия прямого удара молнии.
- 1.1.8 Требования настоящих Норм распространяются на устройство защиты от прямых ударов молнии и на устройство защиты от ее вторичных проявлений для объектов высотой до 60м. Молниезащита объектов высотой более 60м выполняется по проектам, разрабатываемым в специализированных проектных или научно-исследовательских организациях.

1.2 Нормативные ссылки

При разработке настоящих Норм использованы следующие нормативные и технические документы:

IEC 61024-1, Изд. 04: «Молниезащита строительных конструкций. Часть І. Основные принципы». 1990

IEC 61024-1-1, Изд. 09: «Молниезащита строительных конструкций. Часть І. Основные принципы. Руководство А: Выбор уровней защиты для молниезащитных систем» 1993

IEC 61312-1, Изд. 05: «Защита от электромагнитного импульса молнии. Часть I. Основные принципы». 1995

IEC 62305. (Проект) Изд. 1.0: «Защита от молнии». Часть 1-5. 2003

ГОСТ РВ 20.39.308-98. Госстандарт, 2001

ГОСТ Р 50571.21-2000 «Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Раздел 548. Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации»

ПУЭ. Правила устройства электроустановок, Изд.6, 7

НПБ 105-03. Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности. СПб.: Изд. Деан, 2004

ВСН 21-01-98/МО РФ. Нормы проектирования арсеналов, баз и складов ракет и боеприпасов. Требования пожаро - взрывобезопасности. М.: 1998

ВРДС 10-04-99/МО РФ, М.: Минобороны, 2000

ВРДС 36-08-02/МО РФ. Положение по организации и проведению испытаний на экспериментально-испытательной базе научно-исследовательских организаций строительно-квартирных органов МО РФ. М.: Минобороны, 2003

ВСП 45-02-01 МО РФ. М.; Минобороны, 2001

1.3 Термины, определения и сокращения

В настоящем документе применены следующие термины с соответствующими определениями.

- 1.3.1 молниезащита: Необходимый комплекс мероприятий и устройств, предназначенный для обеспечения безопасности людей и защиты зданий, сооружений, оборудования и материальных ценностей от взрывов, пожаров и разрушений, возможных при воздействии молнии.
- 1.3.2 объект военной инфраструктуры: Комплекс технологически и технически связанных между собой зданий, сооружений и систем или отдельное здание (сооружение), предназначенный для выполнения задач по управлению войсками боевого применения, хранения, подготовки, обслуживания и перемещения средств вооружения, военной и др. техники.
- 1.3.3 специальный объект: Комплекс технологически и технически связанных между собой зданий, сооружений и систем или отдельное здание (сооружение), предназначенный для размещения органов управления и вооружения в соответствии с их предназначением.
- 1.3.4 защищаемый объект: Здание, сооружение, их часть или пространство, для которого выполняется молниезащита, отвечающая требованиям настоящих Норм.
- 1.3.5 защищаемые коммуникации: Инженерные коммуникации, входящие в объект (в т.ч. кабели электроснабжения, управления, связи и металлические трубопроводы), для которых требуется защита от поражения молнией и заноса токов и потенциалов в сооружения согласно требованиям настоящих Норм.
- 1.3.6 категория объекта: Характеристика объекта по его назначению и тяжести последствий разряда молнии.

Примечание – Категория молниезащиты определяется в том числе категорией взрыво и пожароопасности здания (сооружения), принятой в НПБ 105-03.

- 1.3.7 удар молнии в землю: Электрический разряд атмосферного происхождения между грозовым облаком и землей, состоящий из одного или нескольких импульсов тока (компонентов).
- 1.3.8 прямой удар молнии (ПУМ): Непосредственный контакт канала молнии с защищаемым объектом (внешней системой молниезащиты), сопровождающийся протеканием тока молнии.
- 1.3.9 удар молнии вблизи объекта: Разряд молнии в окрестности защищаемого объекта, способный вызвать повреждения электрических и электронных систем, а также искрения внутри защищаемого объекта.
- 1.3.10 электромагнитный импульс молнии (ЭМИМ): Электромагнитное влияние тока молнии.

П р и м е ч а н и е - Включает воздействие импульсов тока молнии и влияние электромагнитного поля (ЭМП) на оборудование электрических и электронных систем.

- 1.3.11 молниезащитная система (МЗС): Система, позволяющая защитить здание или сооружение от повреждений вследствие разряда молнии и обеспечивающая безопасность личного состава. Она включает в себя внешние и внутренние устройства молниезащиты.
- 1.3.12 внешние устройства молниезащиты (молниеотводы): Часть МЗС, предназначенная для защиты от ПУМ и состоящая из молниеприемников, токоотводов и заземлителей.

Примечания

- 1 Обычно указанные элементы молниезащиты находятся снаружи зданий или сооружений и выполняются в виде стержневых, тросовых молниеотводов или молниезащитной сетки.
- 2 *Молниеприемник* непосредственно воспринимает прямой удар молнии и должен надежно противостоять механическим и тепловым воздействиям тока и высокотемпературного канала молнии.
- 3 *Токоотвод* соединяет молниеприемник с заземлителем, предназначен для пропускания тока молнии (или его части) от молниеприемника к заземлителю и рассчитывается на тепловое и электродинамическое воздействие.
- 4 *Заземлитель* служит для отвода тока молнии в землю и снижения потенциала элементов M3C.
- 1.3.13 внутренние устройства молниезащиты: Часть МЗС, предназначенная для защиты оборудования внутри здания или сооружения от вторичных проявлений молнии.
- 1.3.14 естественный элемент M3C: Элемент, выполняющий функцию молниезащиты, но не установленный специально для этой цели.

Примечание - Примеры применения этого термина: «естественный» молниеприемник; «естественный» токоотвод; «естественный» заземлитель; «естественный» экран и т.п.

- 1.3.15 **молниеприемники:** Часть внешней МЗС, выполненная в виде стержневых, тросовых молниеотводов или молниеприемной сетки, предназначенная для перехвата разрядов молнии.
- 1.3.16 **токоотводы:** Часть внешней МЗС, предназначенная для отвода тока молние от молние приемников в систему заземлителей.
- 1.3.17 заземлители (молниезащитные): Часть внешней МЗС, предназначенная для отвода тока молнии в землю и последующего его растекания в земле.
- 1.3.18 заземляющий электрод: Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
- 1.3.19 искусственный заземлитель: Заземлитель, специально выполняемый для целей заземления.
- 1.3.20 естественный заземлитель: Сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.

Примечание - Например, арматурная сетка фундамента здания (сооружения).

- 1.3.21 заземляющий проводник (токоотвод): Проводник, соединяющий заземляемую часть (молниеприемник) с заземлителем.
- 1.3.22 заземляющее устройство: Совокупность заземлителя и заземляющих проводников.
- 1.3.23 заземляющий контур: Заземляющий проводник в виде замкнутого горизонтального заземлителя, проложенного в земле. Например: заземляющий электрод, проложенный вокруг здания.
- 1.3.24 сопротивление заземляющего устройства (R₃): Отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.
- 1.3.25 напряжение на заземляющем устройстве: Напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.

- 1.3.26 зона нулевого потенциала (относительная земля): Часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю.
- 1.3.27 проводящая часть: Часть установки или конструкции, которая может проводить электрический ток.
- 1.3.28 соединенная между собой металлическая арматура: Арматура железобетонных конструкций здания (сооружения), которая обеспечивает электрическую непрерывность цепи.
- 1.3.29 уравнивание потенциалов: Электрическое соединение проводящих частей для достижения равенства их потенциалов.

П р и м е ч а н и е - Защитное уравнивание потенциалов - уравнивание потенциалов, выполняемое в целях электробезопасности.

- 1.3.30 выравнивание потенциалов: Снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле или в полу (на их поверхности) и присоединенных к заземляющему устройству, или путем применения специальных проводящих покрытий на поверхности земли.
- 1.3.31 опасное искрение: Недопустимый электрический разряд внутри защищаемого объекта, вызванный ударом молнии.
- 1.3.32 **безопасное расстояние:** Минимальное расстояние между двумя проводящими элементами вне или внутри защищаемого объекта, при котором между ними не может произойти опасного искрения (разряда).
- 1.3.33 отдельно стоящий молниеотвод: Молниеотвод, молниеприемники, токоотводы и заземлители которого расположены таким образом, чтобы путь тока молнии не имел контакта с защищаемым объектом (с учетом наружных зон взрывоопасности, если они есть) и вводимыми в него коммуникациями, что обеспечивается безопасными расстояниями по воздуху и земле.
- 1.3.34 **молниеотвод, установленный на защищаемом объекте:** Молниеотвод, молниеприемники и токоотводы которого расположены таким образом, что ток молнии или его часть растекается через защищаемый объект и его заземлитель.

1.3.35 угол защиты: Угол α , образованный от вершины стержневого молниеотвода (защитного троса) до наиболее удаленной точки защищаемого объекта на его высоте h_0 .

П р и м е ч а н и е - Угол защиты α для молниеприемной сетки определяется от ее периметра до поверхности земли и обеспечивает молниезащиту боковых поверхностей здания и территории, определяемой углом α .

- 1.3.36 электромагнитный экран: Замкнутый металлический экран, сетчатый или сплошной, покрывающий весь защищаемый объект или его часть, с целью снижения проникания ЭМП молнии в защищаемую зону и предотвращения вывода из строя электрических и электронных систем.
- 1.3.37 зона защиты от ЭМИМ: Зона, в которой определяется электромагнитная обстановка в связи с электромагнитными воздействиями молнии.

Примечание - В зоне защиты должно быть ослаблено электромагнитное влияние тока молнии.

- 1.3.38 устройства для уравнивания потенциалов: Устройств защиты, ограничивающие разность потенциалов, обусловленную растеканием тока молнии.
- 1.3.39 устройство защиты от перенапряжений (УЗП): Устройство, предназначение для ограничения перенапряжений между элементами защищаемого объекта (например, разрядник, нелинейный ограничитель перенапряжений или иное защитное устройство).
- 1.3.40 поражаемость объекта молнией $N_{\rm H}$: Ожидаемое число ПУМ в незащищенный молниеотводами объект в зависимости от грозовой обстановки в месте размещения объекта и его габаритных размеров.
- 1.3.41 допустимое число ударов молнии: Предельно допустимое число $N_{\rm d}$ ударов молнии в объект, защищенный молниеотводами (уд/в год). Определяется категорией молниезащиты объекта.
- 1.3.42 расчетная эффективность молниезащиты (P'_H): Эффективность внешней молниезащитной системы, с учетом данных по расположению объекта на местности, его площади, высоты, грозовой обстановки для данной местности и допустимого числа N_d ударов молнии в объект.

П р и м е ч а н и е — Расчетная эффективность молниезащиты P'_{H} определяется по формуле: $P'_{H} \geq 1 - \frac{N_{o}}{N_{-}} \; .$

- 1.3.43 требуемая эффективность молниезащиты (P_H): Эффективность внешней молниезащитной системы обеспечивающая молниезащиту объекта заданной категории (см. таблицу 2.1).
- 1.3.44 зона защиты молниеотвода: Пространство в окрестности молниеотвода заданной геометрии, отличающееся тем, что эффективность молниезащиты P_H объекта, целиком размещенного в объеме данного пространства, не ниже ее расчетного значения P'_H , т.е. $P_H \ge P'_H$.
- 1.3.45 уровень молниезащиты: Характеризуется суммарной вероятностью перехвата прямого удара минимального тока I_{\min} молнии и вероятностью возникновения материального ущерба от воздействия максимального тока I_{\max} молнии (совместно с длиннопериодными и последующими короткими разрядами).

Примечания

- 1 Уровень молниезащиты понятие более широкое, чем эффективность молниезащиты, характеризующая вероятность, с которой разряд молнии будет перехвачен внешней МЗС.
- 2 Понятие уровня молниезащиты используется при совместной разработке внешних и внутренних устройств молниезащиты.
- 3 Понятие эффективность молниезащиты используется при разработке только внешних устройств молниезащиты.
- 1.3.46 **технические средства** (**TC**): Электротехническое, радиоэлектронное и информационно-технологическое оборудование, устанавливаемое в сооружении.
 - 1.3.47 ток молнии (і): Ток в момент удара молнии.
- 1.3.48 средняя крутизна тока молнии (di/dt): Средняя скорость изменения тока молнии в пределах промежутка времени $[t_2-t_1]$.

П р и м е ч а н и е - Она характеризуется отношением приращения тока разряда молнии в начале и конце временного интервала $[i(t_2) - i(t_1)]$, ко времени $T_1 = [t_2 - t_1]$.

- 1.3.49 продолжительность разряда (T): Время протекания тока молнии в момент удара.
- 1.3.50 **короткий разряд:** Часть разряда молнии, которая соответствует импульсному току короткого первого разряда.
- 1.3.51 повторный короткий разряд: Часть разряда молнии, которая соответствует импульсному току повторных коротких разрядов, которые следуют за первым коротким разрядом.

- 1.3.52 длительный разряд (разряд большой длительности): Часть разряда молнии, которая соответствует длительно существующему току между первым и последующими (повторными) короткими ударами молнии.
- 1.3.53 максимальное значение (I_{max}): Максимальное (амплитудное) значение первого короткого разряда молнии.
- 1.3.54 минимальное значение (I_{min}): Минимальное амплитудное значение первого короткого разряда молнии.
- 1.3.55 длительность фронта импульса тока короткого разряда (\mathbf{T}_1): Интервал времени, в котором достигается от 10% до 90% величины максимального значения амплитуды импульса тока молнии.
- 1.3.56 время полуспада (T₂): –интервал времени между началом импульса и моментом времени, когда ток спадает до значения 50% от его амплитудного значения.
- 1.3.57 **общий заряд (Q):** Интеграл по времени тока молнии для полной продолжительности разряда молнии.
- 1.3.58 Заряд короткого разряда (Q_1): Интеграл во времени тока молнии короткого разряда.
- 1.3.59 Заряд длинного разряда (Q₂): Интеграл во времени тока молнии длинного разряда.
- 1.3.60 удельная энергия (W/R): Энергия, выделяемая током молнии в проводнике сопротивлением 1 Ом.

П р и м е ч а н и е - Выделяемая энергия соответствует интегралу квадрата тока молнии по времени полной длительности разряда.

1.4 Классификация объектов военной инфраструктуры по категориям молниезащиты

Характеристика разряда молнии и ее воздействие на здания, сооружения и коммуникации приведены в приложении A и приложение Б.

В зависимости от значимости объекта молниезащиты, типа здания (сооружения) его назначения, наличия взрывчатых или легко воспламеняющихся веществ, опасности для экологии, окружающей среды и населения, возможного материального ущерба объекты военной инфраструктуры подразделяются на три категории.

<u>ВСП 22 - 02 - 07</u> МО РФ

1.4.1 Первая категория

К сооружениям первой категории относятся следующие объекты военной инфраструктуры:

- пункты управления и узлы связи (в том числе размещаемые в специальных фортификационных сооружениях), обеспечивающие выполнение боевой задачи;
- антенно-фидерные устройства, обеспечивающие командные функции специальных объектов;
- пункты хранения оружия, боеприпасов, горючего, ЗИП и других материальных средств;
- стартовые комплексы и нусковые устройства, ПВО и ПРО;
- здания центров (банков) информации;
- хранилища и склады ракет и боеприпасов (в том числе и ядерных боеприпасов),
 взрывоопасных изделий и взрывчатых веществ, в которых хранятся боеприпасы категории опасности Е2, Е5-Е7 [2];
- хранилища инженерных боеприпасов (ПТМ, ППМ, УЗ);
- цеха сборки, ремонта, разборки, регламентных работ с ракетами и боеприпасами категории опасности Е1, Е3-Е4 [2];
- цеха разборки, ремонта зарядов и порохов, пункты выплавки ВВ и изготовления продуктов на основе ВВ и порохов;
- лаборатории испытания ракет, боеприпасов и взрывоопасных изделий;
- погрузочно-разгрузочные и прицеховые платформы (площадки, причалы) при работе с ракетами и боеприпасами категории опасности E2, E5-E7 [2];
- участки железной дороги, предназначенные для погрузки и выгрузки ракет, боеприпасов, взрывоопасных изделий категории опасности Е2, Е5-Е7, формирования
 транспортов для отправки, временной стоянки вагонов и боевой техники, загруженной ракетами и боеприпасами соответствующих категорий;
- открытые площадки (навесы) временного хранения ракет и боеприпасов категории опасности E2, E5-E7 [2];
- хранилища горюче-смазочных материалов;
- хранилища карбида кальция;
- кислорододобывающие станции;

- технические здания и хранилища жидкого кислорода;
- водорододобывающие станции;
- прочие здания и сооружения, помещения которых согласно ПУЭ относятся к зонам классов В-I и В-II и к категориям A и Б по требованиям НПБ 105-03.

Все объекты первой категории должны быть надежно защищены от прямых ударов молнии и от ее вторичных проявлений.

Для защиты объектов первой категории от прямых ударов молнии привлекается весь комплекс мероприятий, обеспечивающих молниезащиту с заданной эффективностью согласно требованиям п.п.2.1.1; 2.1.2; 2.4; 2.6 и 2.7. Защиту от вторичных проявлений молнии следует осуществлять системой уравнивания потенциалов, объемными электромагнитными экранами и устройствами защиты вводов согласно требованиям раздела 4.

Защита от прямых ударов молнии должна осуществляться отдельно стоящими молниеотводами. Исключение составляют:

- объекты первой категории, размещенные в обсыпных, полузаглубленных, заглубленных и подземных сооружениях, выполненных из сборного, сборно-монолитного железобетона или имеющих металлическую гидроизоляцию. Защиту таких объектов от прямого удара молнии допускается осуществлять системой стержневых (тросовых) молниеотводов или молниеприемной сеткой с размером ячейки 4х4м, устанавливаемых непосредственно на защищаемом здании (сооружении). Молниеприемники заземляются посредством токоотводов на контур, проложенный по периметру сооружения, согласно требованиям п.2.1.2.1 и п.3.6.
- обвалованные железобетонные, кирпичные и бетонные хранилища, закрытые погрузочно-разгрузочные платформы, где хранятся боеприпасы и их элементы в штатной упаковке, категории опасности Е5, Е6, Е7. Защиту таких объектов допускается осуществлять системой стержневых, тросовых молниеприемников или молниеприемной сеткой, установленных на кровле с заземлением посредством токоотводов на контур, проложенный по периметру хранилища, согласно требованиям п.2.1.2.1 и п.3.6.

1.4.2 Вторая категория

Ко второй категории относятся следующие объекты военной инфраструктуры:

- командные пункты и узлы связи, не вошедшие в перечень объектов І категории;
- вычислительные центры, лабораторные корпуса и другие здания и сооружения,
 обеспечивающие выполнение задач МО РФ;
- полигоны для испытания вооружения и военной техники;
- сооружения, в которых хранятся в металлической укупорке легковоспламеняющиеся вещества;
- помещения, в которых перерабатываются и хранятся в открытом виде легковоспламеняющиеся вещества, но в таких условиях, при которых электрическая искра не может вызвать пожар или взрыв;
- помещения, в которых имеются негерметично закрытые аппараты и оборудование с жидкостями с температурой вспышки выше 61°С или температурой самого продукта 250°С и ниже;
 - цеха сборки и испытаний, хранилища и позиции ракет с топливом, не создающим взрывоопасной среды в нормальном режиме работы, относящиеся по классификации ВСН 21-01-98 к категории А, Б, В1-В4;
- балансировочные павильоны и павильоны присоединения БЗО;
- хранилища глубинных бомб и инженерных боеприпасов в металлической оболочке
 или находящихся в обсыпных, полузаглубленных и заглубленных сооружениях;
- хранилища реактивного вооружения категории А, Б, В1-В4 [2];
- производственные помещения для обслуживания боевой техники категории А, Б,
 В1-В4 [2];
- приемные и передающие радиоцентры;
- прочие здания и сооружения, помещения которых относятся согласно ПУЭ к зонам классов В-Ia, В-I6, В-IIa и к категориям В1-В4 по требованиям НПБ 105-03;
- прочие наружные установки, содержащие согласно ПУЭ зону класса В-Iг.

Здания и сооружения второй категории должны быть защищены от прямых ударов молнии и от ее вторичных проявлений в соответствии с требованиями разделов 2,4.

Внешние молниезащитные устройства следует выполнять в виде стержневых, тросовых молниеотводов, и молниезащитной сетки, устанавливаемых на здании (сооружении). При соответствующем обосновании допускается молниезащиту выполнять в виде отдельно стоящих стержневых и тросовых молниеотводов.

1.4.3 Третья категория

К третьей категории относятся объекты, военной инфраструктуры, для которых прямой удар молнии представляет опасность только в отношении пожаров, механических разрушений, выхода из строя оборудования, а также поражения людей, находящихся внутри зданий.

К сооружениям третьей категории относятся:

- здания штабов и учреждений;
- пункты ремонта вооружения и техники;
- военные трубопроводы;
- сооружения учебных городков и полигонов;
- здания и сооружения для размещения испытательных организаций, оборудования и проведения испытаний;
- объекты размещения автотракторной техники;
- хранилища, платформы, открытые площадки (навесы) для хранения комплектующих элементов, вооружения и военной техники, не содержащих ВВ, пиротехнических составов и взрывоопасных изделий (категория опасности В и Д по ВСН 21-01-98);
- цеха по ремонту ракетно-артиллерийского и радиолокационного оборудования;
- лагерные палатки, наблюдательные вышки, оборудованные воздушными силовыми,
 осветительными линиями, линиями связи и сигнализации;
- открытые площадки для хранения порожней тары из-под взрывоопасных веществ (категория опасности Д по ВСН 21-01-98);
- цеха ремонта и обновления гильз;
- прочие здания и сооружения, помещения которых относятся согласно ПУЭ к зонам классов П-I, П-II, П-IIа и к категориям В1-В4 по требованиям НПБ 105-03;
- здания и сооружения III-V степени огнестойкости, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрывоопасных и пожароопасных классов;
- административные, бытовые, лабораторные, полевые здания и сооружения;
- отдельно стоящие вышки, дымовые и вентиляционные трубы;
- водонапорные башни и башни производственного, противопожарного и прочего назначения.

<u>ВСП 22 - 02 - 07</u> МО РФ

Объекты третьей категории защищаются от прямых ударов молнии преимущественно стержневыми, тросовыми молниеотводами и молниеприемной сеткой, устанавливаемыми непосредственно на здании (сооружении) и, при необходимости, от заноса высоких потенциалов в соответствии с требованиями раздела 5.

- 1.4.4 Для сооружений, имеющих помещения I, II и III категорий, молниезащиту следует выполнять в соответствии с требованиями для объектов I категории.
- 1.4.5 Для сооружений, имеющих помещения II и III категорий, молниезащиту следует выполнять в соответствии с требованиями по II категории молниезащиты.
- 1.4.6 Для объектов любой категории должны быть обеспечены меры по безопасности личного состава и пожарной безопасности при прямом ударе молнии.
- 1.4.7 Проектирование и создание молниезащитной системы для объектов военной инфраструктуры, относящихся к I-III категории молниезащиты, представляет ответственную задачу и должно выполняться специализированными проектными организациями.

П р и м е ч а н и е — Допускается самостоятельная разработка проектов молниезащиты мест временного хранения боеприпасов эксплуатирующими организациями арсеналов баз и складов боеприпасов в соответствии с требованиями настоящих Норм с привлечением (или экспертизой проекта) специализированной организации (при необходимости).

1.5 Параметры разрядов молнии

Требования к параметрам молнии устанавливают:

- по току при ударе молнии в объект;
- по напряженности электромагнитных полей при ударе молнии вблизи объекта в молниеотвод или в землю.

Параметры токов молнии, предлагаемые для нормирования средств защиты от прямых ударов молнии и ее вторичных проявлений, приведены в приложении Б.

Примечания

- 1 Параметры токов молнии необходимы для расчета механических и термических воздействий при прямом ударе молнии, нормировании средств защиты от электромагнитных воздействий и испытании к воздействию прямых ударов молнии.
- 2 Ток молнии состоит из одного или нескольких ударов, а именно:
- первого короткого разряда и сопровождающего длинного разряда;
- одного или нескольких последующих (повторных) разрядов.
- 3 Параметры молнии, характеризующие ее поражающее действие, определены требованиями «Инструкции по молниезащите ...» СО 153-343.21.122-2003 и стандартами по молниезащите международной электротехнической комиссии (МЭК) [3,4,5].

1.6 Выбор эффективности внешней молниезащитной системы для объекта заданной категории

- 1.6.1 Эффективность внешней молниезащитной системы должна соответствовать установленной категории здания (сооружения) и является исходной предпосылкой для ее проектирования. Категория молниезащиты объекта (здания, сооружения) указывается в задании на проектирование.
- $1.6.2\ Ha\ nepsom\ этапе\ выбора\ M3C\ производится оценка объекта защиты и анализ грозовой активности (среднегодового числа грозовых разрядов на единицу площади) в рассматриваемой местности. Эти данные служат основой для определения поражаемости незащищенного объекта <math>N_{\pi}$ ударами молнии. Определение N_{π} производится согласно приложению B.
- 1.6.3~Ha~втором~этапе устанавливается предельно допустимое для данного объекта число ударов N_o молнии в год (например, 1 раз в 1000, 500, 200, 20 и т.п. лет) согласно категории молниезащиты объекта. Для объектов военной инфраструктуры различной категории молниезащиты предельно допустимое число ударов молнии в год дано в таблице 2.1. При установлении N_o учитывались требования n.1.4.
- $1.6.4\ Ha\ mpembem\ этапe$ производится сравнение поражаемости N_{π} незащищенного объекта заданной категории с предельно допустимым для рассматриваемого объекта среднегодовым числом прямых ударов молнии N_{∂} в год, приводящих к опасным последствиям.

Если $N_{\pi} > N_{\delta}$, то производится выбор внешней молниезащитной системы. Для этой цели определяется расчетная эффективность P'_{H} внешней МЗС, которая обеспечивает не превышение предельно допустимого числа ударов N_{δ} молнии в год для объекта заданной категории:

$$P_H' = 1 - N_{\partial}/N_{II}.$$

Каждой категории объекта молниезащиты (см. таблицу 2.1) соответствует требуемая эффективность P_H внешней МЗС, которая обеспечивает не превышение предельно допустимого числа прорывов $N_{\tilde{\sigma}}$.

Для обеспечения требуемого уровня молниезащиты эффективность P_H внешней M3C должна быть не ниже ее расчетного значения. Если это условие выполняется, то

по данным таблицы 2.1 определятся угол защиты α , обеспечивающий требуемую эффективность P_H внешней M3C, и производится расчет ее параметров.

Например, для сооружения 40x40x10м при плотности грозовых разрядов $n=4(1/\kappa m^2 cod)$, расчетное число ударов в год в незащищенное сооружение $N_{II}=0,037$. Для сооружений I категории предельно допустимое число ударов молнии в сооружение в год, приводящих к опасным последствиям, установлено на уровне $N_{o}=0,001$, т.е. $N_{II}>N_{o}$. Следовательно, необходимо принять меры по созданию внешней M3C сооружения с расчетной эффективностью не ниже $P'_{II}=1-N_{o}/N_{II}=0,97$. По данным таблицы 2.1 предельно допустимому числу ударов молнии в сооружение на уровне $N_{o}=0,001$ (т.е. один раз в 1000 лет) соответствует эффективность внешней M3C (вероятность перехвата молнии) на уровне $P_{II} \geq 0,99$. В данном случае $P'_{II} < P_{II}$. Для выбранной схемы молниезащиты по данным таблицы 2.1, определяется угол защиты α и производится расчет параметров внешней M3C в соответствии с положениями раздела 2.

- 2 Защита объектов военной инфраструктуры от прямого удара молнии
- 2.1 Требования к защите объектов военной инфраструктуры от прямого удара молнии
 - 2.1.1 Комплекс мер молниезащиты
- 2.1.1.1 Для защиты объектов военной инфраструктуры от разрядов молнии используется комплекс мер, которые включают [3,4,5]:
- внешнюю молниезащитную систему (МЗС) состоящую из молниеприемников, токоотводов и заземлителей;
- внутреннюю молниезащитную систему (МЗС), включающую устройства защиты
 вводов, магистрали заземления, систему уравнивания потенциалов и экранирующие
 объемы.

П р и м е ч а н и е - Молниезащита может содержать только внешние или только внутренние устройства. В общем случае защита от прямых ударов молнии осуществляется совместновнешними и внутренними МЗС.

2.1.1.2 Внешняя МЗС предназначена для перехвата разряда молнии в направлении сооружения и обеспечения безопасного стекания тока молнии в землю. Внешняя МЗС может быть установлена отдельно от сооружения (отдельно стоящие молниеотво-

ды - стрежневые, тросовые), или может быть установлена на защищаемом сооружении, а при наличии металлических ограждающих конструкций (металлической кровли, металлоизоляции, арматурных и несущих металлических конструкций) составлять совместно единую молниезащитную систему.

- 2.1.1.3 Внешняя молниезащитная система (МЗС) должна обладать достаточной эффективностью, чтобы при разряде молнии в систему, удар молнии приходился не в объект, а в молниеприемники. При этом следует учитывать, что высокие однократные молниеотводы могут провоцировать разряд молнии в систему при прохождении над ней грозового фронта. Поэтому для защиты следует использовать невысокие многократные стержневые и тросовые молниеотводы или молниезащитную сетку, обеспечивающие расположение объекта во внутренней области молниезащитной системы (зоны защиты).
- 2.1.1.4 В качестве естественных молниеотводов рекомендуется использовать соседние, более высокие, чем защищаемый объект здания и сооружения, а также другие высокие объекты, включая опоры ЛЭП, мачты, телевизионные вышки, деревья и т.п. Их использование в качестве молниезащитных устройств допускается только для объектов ІІ и ІІІ категории. Достаточность применения естественных молниеприемников в качестве внешней МЗС, должна быть обоснована в соответствии с положениями настоящих Норм.
- 2.1.1.5 Внутренняя МЗС предназначена для защиты от вторичных проявлений разряда молнии, а именно: предотвращения опасного искрения внутри сооружения, ограничения электромагнитных полей, токов и потенциалов, наводимых на инженерных коммуникациях объекта и воздействующих на внутреннее оборудование зданий и сооружений.
- 2.1.1.6 Ток молнии при прямом ударе в молниеприемник внешней МЗС отводится в землю через токоотвод (спуск) и (или) металлоконструкции здания и сооружения и растекается в земле при помощи системы заземлителей или через находящиеся в земле металлоконструкции зданий и сооружений (металлоконструкции фундаментов зданий и сооружений).
- 2.1.1.7 При растекании токов молнии в земле на ее поверхности образуется распределенный потенциал (т.н. «шаговое напряжение») для защиты от которого должны быть предусмотрены меры по выравниванию потенциала в местах возможного попадания под него людей и животных.

- 2.1.2 Требования к защите объектов І категории
- 2.1.2.1 Защита от прямых ударов молнии зданий и сооружений, отнесенных по устройству молниезащиты к объектам I категории, должна выполняться отдельно стоящими стержневыми или тросовыми молниеотводами.

Допускается молниезащиту обсыпных полузаглубленных, заглубленных и подземных сооружений (хранилищ), а также обвалованных железобетонных, бетонных и кирпичных хранилищ и ПРП осуществлять в соответствии с требованиями, изложенными в пунктах 1.4.1. и 2.6.

- 2.1.2.2 Сопротивление заземления отдельно стоящих молниеотводов для объектов I категории определяется в зависимости от удельного сопротивления грунта:
- при ρ <100 Ом⋅м сопротивление заземлителя R_{ij} не должно превышать 5 Ом;
- при 100< ρ <500 Ом⋅м сопротивление заземлителя R, не должно превышать 10 Ом;
- при ρ ≥ 500 Ом·м сопротивление заземлителя R, определяется по формуле

$$R_{a} = 10 + 0.01\rho$$
.

Для снижения сопротивления заземления, заземлители отдельно стоящих многократных стержневых молниеотводов, расположенные по одной из сторон защищаемого объекта (хранилища) должны быть объединены между собой стальной полосой сечением не менее 100мм².

При соединении между собой n заземлителей с сопротивлением заземления R'_{\bullet} , их суммарное сопротивление рассчитывается по формуле:

$$R_{3}=\frac{R_{3}'R_{3\Gamma}}{nR_{2\Gamma}+R_{2}'},$$

где n - количество опор M3C;

 R_3 – суммарное сопротивление заземлителя;

 R'_* - сопротивление заземления отдельной опоры;

 $R_{3\Gamma}$ - сопротивление полосы, соединяющей между собой опоры молниеотвода.

Сопротивление заземлителей опор одиночного тросового молниеотвода R_3^T может быть принято в 2 раза больше, чем заданное выше сопротивление заземления молниеотводов, т.к. суммарное сопротивление растеканию тока молнии через заземлители двух опор для подвеса троса составляет $\sum R^T = R_3^T/2$.

2.1.2.3 Нормируемая в п.2.1.2.2 величина сопротивления заземления R_3 отдельно стоящих молниеотводов распространяется на молниеотводы, устанавливаемые непосредственно на зданиях (сооружениях), использующих подземные металлоконструкции (металлические конструкции фундаментов зданий) в качестве общего заземляющего устройства.

Допускается соединение в единую заземляющую систему заземлителей отдельно стоящих молниеотводов и подземных металлоконструкций сооружений из сборного или сборно-монолитного железобетона.

Если сопротивление заземления R, металлоконструкций фундаментов зданий и сооружений не обеспечивает его нормированного значения в соответствии с требованиями п.2.1.2.2, то дополнительно выполняется искусственный заземлитель (контур заземления) в соответствии с требованиями п.п.3.25-3.33. Сопротивление заземления R_3 металлоконструкций фундаментов зданий рассчитывается по одной из типовых схем приведенных в таблице Д.1.5 приложения Д.1.

Примечание - При соединении в единую систему заземлителей отдельно стоящих молниеотводов и металлоконструкций здания (сооружения) требования к безопасному расстоянию ℓ между молниеотводами и объектом защиты не предъявляются.

2.1.2.4 Для зданий (сооружений) не содержащих металлических конструкций, или в случае раздельного заземления металлоконструкций здания и отдельно стоящих молниеотводов, их расстановка должна выполняться с учетом требований к защите объектов от перекрытий по воздуху и в грунте (по его поверхности).

Защита от перекрытий по воздуху достигается безопасным расстоянием по воздуху (ℓ_*) между молниеотводом и объектом (с учетом наружной зоны взрывоопасности, если она есть). При наличии у объекта зоны взрывоопасности, безопасное расстояние отсчитывается от ее внешней границы до молниеотвода.

Объект высотой $h_0 \le 15$ м считается защищенным от перекрытий по воздуху, если от него (включая наружные зоны взрывоопасности) до стержневого молниеотвода или до тросового молниеотвода обеспечено безопасное расстояние ℓ_s (м), которое удовлетворяет следующим условиям:

- ℓ_a=5м при ρ≤100 Ом·м;
- ℓ_{\star} =(5+0,01 ρ)м при 100< ρ <500 Ом·м;

- ℓ_s =12м при ρ >500 Ом·м.

Для объектов высотой более 15м расстояние ℓ_s увеличивается на

$$\Delta \ell_a = 0.1(h_0 - 15)$$
, M.

2.1.2.5 Наименьшее допустимое расстояние ℓ_T от защищаемого объекта до троса в середине пролета при длине троса до 200м составляет ℓ_T =6м, для $\rho \leq 500~{\rm Om}\cdot{\rm m}$, где ℓ_T - расстояние от троса до сооружения по вертикали.

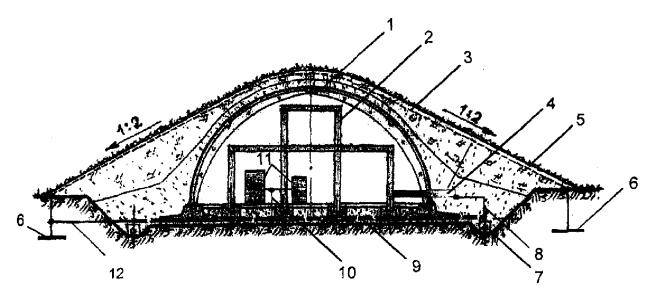
При $\rho = 500...1500$ (Ом·м), допустимое расстояние составляет: $\ell_{\tau} = 6...10$ м.

- 2.1.2.6 Для исключения заноса высокого потенциала в защищаемое здание или сооружение по подземным металлическим конструкциям и коммуникациям (в том числе по электрическим кабелям любого назначения) заземлители отдельно стоящих стержневых и тросовых молниеотводов должны быть удалены от металлоконструкций фундамента здания и входящих в них коммуникаций на расстояние, $\ell_s = (\ell_s + 2)$, м.
- 2.1.2.7 При наличии на зданиях и сооружениях прямых газоотводных и дыхательных труб для свободного отвода в атмосферу газов, паров и взвесей взрывоопасной концентрации в зону защиты молниеотводов должно входить пространство над обрезом труб, ограниченное полушарием радиусом 5м [1].

Для газоотводных и дыхательных труб, оборудованных клапанами, в зону защиты молниеотводов должно входить пространство над обрезом труб, ограниченное цилиндром высотой H и радиусом R [1]:

– для газов тяжелее воздуха при избыточном давлении внутри установки менее 5,05 кПа(0,05 атм) H=1м, R=2м;

$$5,05-25,25$$
кПа (0,05-0,25 атм) $H=2,5$ м, $R=5$ м;


для газов легче воздуха при избыточном давлении внутри установки:

до 25,25кПа
$$H$$
=2,5м, R =5м; свыше 25,25кПа H =5м, R =5м.

Не требуется включать в зону защиты молниеотводов пространство над обрезом труб: при выбросе газов невзрывоопасной концентрации; наличии азотного дыхания; при постоянно горящих факелах и факелах, поджигаемых в момент выброса газов; для вытяжных вентиляционных шахт, предохранительных и аварийных клапанов, выброс

газов взрывоопасной концентрации из которых осуществляется только в аварийных случаях [1].

- 2.1.2.8 В наземных обвалованных и необвалованных железобетонных, бетонных и кирпичных зданиях допускается устанавливать непосредственно на кровле молниеприемные мачты (тросы) или молниезащитную сетку. Все элементы, возвышающиеся над молниезащитной сеткой должны иметь дополнительные молниеприемники и токоотводы, присоединенные на сварке к сетке. При установке молниеотводов на объекте от каждой сетки и тросового молниеприемника должно быть обеспечено не менее двух токоотводов. Токоотводы от молниезащитной сетки должны быть установлены с шагом не более 8м.
- 2.1.2.9 Для обсыпных полузаглубленных и заглубленных сооружений (хранилищ) из сборного и сборно-монолитного железобетона допускается выполнять молниезащиту с помощью металлической (молниезащитной) сетки, уложенной на грунт (рисунок 2.1).

- 1 защищаемый объект; 2 встроенная железобетонная конструкция; 3 молниезащитная сетка; 4 гермокассета ввода инженерных коммуникаций; 5 защитный слой грунта (щебня);
 - 6 заземлители молниезащитной сетки; 7 внешний контурный заземлитель;
 - 8 -соединение инженерных коммуникаций с внешним заземлителем;
- 9 арматурная сетка фундамента плиты, выполняющая роль заземлителя для оборудования; 10 заземление корпусов внутреннего оборудования; 11 внутреннее оборудование;
 - 12 гальваническое соединение сетки с арматурой фундамента и заземлителем;
 - l_3 расстояние между молниезащитной сеткой и инженерными коммуникациями

Рисунок 2.1 - Молниезащита обсыпного полузаглубленного сооружения

Молниезащитная сетка должна быть выполнена из стальной проволоки диаметром не менее 8мм или полосы соответствующего сечения, иметь квадратные ячейки с шагом не более 4×4м и присоединяться к контуру заземления в точках отстоящих другот друга на расстоянии не более 8м. Допускается увеличивать размер ячейки молниезащитной сетки с одновременной установкой в ее узлах стержневых молниеприемников.

Молниезащитная сетка должна быть гальванически соединена не менее чем в двух точках с арматурным каркасом сооружения и заземлителем (контуром заземления).

Допускается укладка грунта на молниезащитную сетку слоем 50-100мм.

При необходимости защиты от ПУМ элементов, возвышающихся над поверхностью грунта, они должны иметь дополнительные молниеприемники и токоотводы, присоединенные к молниезащитной сетке.

- 2.1.2.10 Металлическая сетка или металлическая кровля могут применяться совместно с отдельно стоящими стержневыми и тросовыми молниеотводами для всех зданий и сооружений I категории как дополнительная мера для защиты от перекрытий по воздуху. При этом металлическая сетка и заземлители стержневых (тросовых) молниеотводов должны быть гальванически соединены с арматурой фундамента здания или с контуром заземления, выполненным по его периметру.
- 2.1.2.11 Для защиты от искрений внутри зданий и сооружений при разряде молнии в объект или близи него между протяженными металлическими предметами и конструкциями (трубопроводы, каркас сооружения, оболочки кабелей, обрамляющие уголки каналов и т. п.) в местах взаимного сближения на расстояние 10см и меньше, через каждые 20м, следует приваривать или припаивать металлические перемычки из стальной проволоки диаметром не менее 5мм или стальные ленты сечением не менее 24мм²; для кабелей с металлическими оболочками или броней, перемычки должны выполняться из гибкого медного проводника в соответствии с указаниями СНиП 3.05.06-85.

В местах соединения элементов трубопроводов и других протяженных металлических предметов и конструкций, расположенных внутри защищаемого объекта, необходимо обеспечить контакт с переходным электрическим сопротивлением не более 0,03Ом на одно соединение. При фланцевом соединении труб такая величина переходного сопротивления достигается затяжкой болтов при их количестве на фланец не менее шести [1]. В местах соединений с переходным сопротивлением более 0,03 Ом необходимо приваривать перемычки, выполненные в соответствии с указаниями данного пункта.

- 2.1.2.12 Ввод линий электропередачи, сетей связи, сигнализации, а также других проводок в объекты I категории на прилегающем участке длиной не менее 50м необходимо осуществлять только кабелями с металлической броней или проложенными в металлических трубах. Ввод всех коммуникаций следует осуществлять в одном месте. Оболочки кабелей, а также трубы и инженерные коммуникации до ввода в защищаемый объект должны быть присоединены к арматуре его железобетонного фундамента, а при невозможности использования последнего в качестве заземлителя к искусственному заземлителю здания (сооружения), выполненному в соответствии с требованиями ПУЭ.
 - 2.1.3 Требования к защите объектов ІІ категории
- 2.1.3.1 Защита от прямых ударов молнии зданий и сооружений II категории должна быть выполнена отдельно стоящими или установленными на защищаемом объекте стержневыми, тросовыми молниеотводами или молниезащитной сеткой. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должен быть выполнен токоотвод к заземлителю.
- 2.1.3.2 Установка молниеприемников или наложение молниеприемной сетки не требуется для зданий и сооружений с металлическими фермами при условии, что в их кровле используются несгораемые или трудно сгораемые утеплители и гидроизоляция.
- 2.1.3.3 Молниезащитная сетка должна быть выполнена из стальной проволоки диаметром не менее бмм или полосы соответствующего сечения, и уложена на кровлю сверху или под несгораемый (трудно сгораемый) утеплитель (гидроизоляцию). Шаг ячеек сетки должен быть не более бхбм. Узлы сетки должны быть единены сваркой. Выступающие над крышей металлические элементы (трубы, шахты, вентиляционные устройства) должны быть присоединены к молниезащитной сетке, а выступающие неметаллические элементы оборудованы дополнительными молниеприемниками, присоединенными к молниезащитной сетке.

На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. Все выступающие неметаллические элементы должны быть оборудованы молниеприемниками, присоединенными к металлу кровли.

Токоотводы от металлической кровли или молниезащитной сетки должны быть проложены к заземлителям не реже чем через 12м по периметру здания.

Для заземления молниезащитной сетки или металлической кровли используется железобетонный фундамент здания, а при его отсутствии по периметру здания или сооружения прокладывается наружный контур заземления на расстоянии 1м от здания и на глубине не менее 0,7м.

Сопротивление заземления R_s току промышленной частоты молниеотводов не должно превышать 20 Ом в грунтах с удельным сопротивлением ρ <1000 Ом·м. При ρ >1000 (Ом·м), сопротивление заземлителей определяется по формуле R_s = 20+0,01 ρ .

2.1.3.4 Для стержневых молниеотводов и молниеприемной сетки, устанавливаемых на защищаемом объекте в качестве токоотводов, следует использовать металлические конструкции зданий и сооружений (колонны, фермы, рамы, пожарные лестницы, арматуру железобетонных конструкций и т.п.), при условии обеспечения электрической непрерывности металлоконструкций и арматуры, выполняемой, как правило, на сварке.

Токоотводы, прокладываемые по наружным стенам зданий, следует располагать не ближе чем в трех метрах от входов или в местах, не доступных для прикосновения людей.

2.1.3.5 При установке отдельно стоящих молниеотводов расстояние от них по воздуху и в земле до защищаемого объекта и вводимых в него подземных коммуникаций не нормируется, если в окрестностях защищаемого объекта нет взрывоопасных (пожароопасных) зон у поверхности земли. Во всех других случаях безопасное расстояние определяется по п.п.2.1.2.4-2.1.2.6.

Заземлители многократных отдельно стоящих стержневых и тросовых молниеотводов соединяются между собой и с арматурой фундамента защищаемого здания (сооружения).

- 2.1.3.6 Наружные установки, содержащие горючие или сжиженные газы и легковоспламеняющиеся жидкости, защищаются от прямых ударов молнии в соответствии с Нормами и Правилами защиты ГСМ.
- 2.1.3.7 Защита от искрений внутри зданий и сооружений при разряде молнии в объект или вблизи него осуществляется в соответствии с требованиями, изложенными в п.2.1.2.11.

- 2.1.3.8 Для защиты наружных установок от вторичных проявлений молнии металлические корпуса установленных на них аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.
- 2.1.3.9 При выполнении защиты от прямых ударов молнии молниеотводами, установленными на зданиях и сооружениях второй категории, должны быть выполнены мероприятия по защите от вторичных проявлений токов молнии, протекающих по металлоконструкциям здания (см. раздел 4).
- 2.1.3.10 Подводка воздушных проводов и кабелей к сооружениям и зданиям второй категории допускается при условии наличия подземного кабельного ввода длиной не менее 50м и выполнения защиты от заноса в помещения высоких потенциалов и токов, опасных для радиоэлектронного оборудования, персонала, и могущих вызвать пожар.

Для защиты от заноса высокого потенциала по подземным коммуникациям они должны быть присоединены на вводе в здание или сооружение к заземлителю электроустановок или заземлителю защиты от прямых ударов молнии.

- 2.1.4 Требования к защите объектов III категории
- 2.1.4.1 Защита от прямых ударов молнии объектов III категории с неметаллической кровлей должна быть выполнена установленными на защищаемом объекте стержневыми, тросовыми молниеотводами или молниезащитной сеткой. Металлические сетки допускается укладывать поверх неметаллической кровли с шагом не более 12х12м.
- 2.1.4.2 При установке стержневых или тросовых молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должен быть проложен по крайней мере один токоотвод. Вместо наружных токоотводов могут использоваться металлические колонны здания или другие несущие конструкции, если их связь между собой и с арматурой фундамента обеспечена сваркой.
- 2.1.4.3 На объектах с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. Все выступающие неметаллические элементы здания должны быть оборудованы молниеприемниками, присоединенными к металлу кровли.
- 2.1.4.4 От молниеприемных сеток или металлических кровель токоотводы прокладываются не реже чем через 24м по наружным стенам объекта к заземлителю. Вместо наружных токоотводов могут использоваться металлические колонны или другие

несущие конструкции, если их связь между собой и с арматурой фундамента обеспечена сваркой.

- 2.1.4.5 Токоотводы должны быть присоединены к арматуре фундамента сооружения или к заземлителю защиты от ПУМ. Заземлитель следует выполнять в виде горизонтального контура по периметру объекта с присоединенными к нему вертикальными стержнями. Контур должен быть связан с арматурой железобетонного фундамента объекта не реже чем через 24м, но не менее чем в 2-х диаметрально противоположных точках. Сопротивление соединенного с фундаментом контура заземления не нормируется.
- 2.1.4.6 Для защиты от ПУМ временных палаточных госпиталей могут быть использованы естественные молниеотводы, например, деревья, оборудованные металлическим молниеприемником, токоспуском и заземляющим электродом, либо маскировочные сетки с металлическими проводниками. В качестве заземляющих устройств могут служить временные, переносные заземлители. При необходимости предусмотреть устройства для выравнивания потенциалов.

При отсутствии естественных возвышающихся опор молниеприемников защита палаточных объектов должна выполняться отдельно стоящими молниеотводами.

При размещении временного госпиталя, оборудованного спутниковой или проводной связью, молниезащита выполняется как для сооружений II категории.

- 2.1.4.7 Защиту от ПУМ долговременных хранилищ передвижной военной техники, которая маскируется под условия местности, следует выполнять в виде молниезащитной сетки, совмещаемой с устройствами маскировки.
- 2.1.4.8 Относящиеся к III категории высокие кирпичные и железобетонные трубы и прочие сооружения, характеризующиеся повышенной опасностью поражения молнией, должны быть оборудованы двумя стержневыми молниеприемниками высотой не менее 1 метра.

От каждого молниеприемника прокладываются по одному токоотводу; для железобетонных труб и вышек функции токоотводов могут быть возложены на арматуру сооружений, если она имеет сварные соединения.

2.1.4.9 Для защиты от заноса высокого потенциала по внешним подземным и надземным металлическим коммуникациям их необходимо на вводе в здание или сооружение присоединить к заземлителю электроустановок или к заземлителю защиты от прямых ударов молнии. 2.1.4.10 Защита от заноса высокого потенциала по воздушным линиям электропередачи напряжением до 1кВ и линиям связи и сигнализации должна выполняться в соответствии с ПУЭ.

2.2 Выбор внешней молниезащитной системы

- 2.2.1 Выбор типа и высоты молниеотводов для защиты от ПУМ производится искодя из параметров объекта: его длины, ширины, высоты $(a \times b \times h_0)$ и эффективности P_H молниезащитной системы. Объект считается защищенным, если совокупность всех его молниеотводов обеспечивает требуемое значение эффективности молниезащиты при заданной предельно допустимой частоте прорыва молнии к сооружению N_o .
- 2.2.2 Запрещается включать естественные молниеотводы в состав мер защиты от прямых ударов молнии для объектов I категории.
 - 2.2.3 При проектировании молниезащитной системы, в частности, для расчета:
 - высоты и зон защиты молниеприемных устройств;
 - импульсного сопротивления сложных систем токоотводов и заземления;
 - токов, напряжений и температуры в токоведущих элементах;
 - напряжений шага и прикосновения;
 - уровня электромагнитных полей;
 - перенапряжений, вносимых по коммуникациям;
 - требуемых параметров устройств защиты вводов и т.п.

допускается использовать соответствующие компьютерные программы, прошедшие сертификацию.

2.2.4 Расчет высоты молниеотводов внешней МЗС производится по защитному углу (углу защиты α).

Примечания

- 1 Угол защиты α используется в «Инструкции по молниезащите ...» (СО 153-343.21.122-2003) [3] и в Международных стандартах по молниезащите [4,5,8].
- 2 При разработке настоящих Норм значения угла защиты α уточнены по результатам крупномасштабных испытаний различных схем молниезащиты в длинных искровых промежутках.
- 2.2.5 Методика определения высоты отдельно стоящих стержневых и тросовых молниеотводов по защитному углу α согласно требованиям настоящих Норм распространяется на устройство молниезащиты маловысотных (высотой до 15м) объектов военной инфраструктуры МО РФ. При этом высота отдельно стоящих стержневых (тросовых) молниеотводов не должна превышать 60м.

2.2.6 Методика определения параметров молниеотводов по углу защиты α может быть распространена на сооружения высотой до 60м при установке молниезащитных устройств непосредственно на объекте.

Примечание – Суммарная высота объекта защиты и установленных на нем молниеотводов не должна превышать 60м.

- 2.2.7 Угол защиты α определяется от вершины стержневого или тросового молниеотвода до наиболее удаленной точки объекта на его высоте h_0 . Примеры установления угла защиты для зданий и сооружений разного типа приведены в приложении Γ .
- 2.2.8 Метод защитного угла может быть использован как для простых по форме сооружений, так и для объектов сложных форм.
- 2.2.9 При определении угла защиты стержневые молниеотводы, мачты и тросы размещаются так, чтобы все части здания (сооружения) на его высоте h_0 находились в зоне защиты, образованной под углом α к вершине молниеотвода высотой h.
- 2.2.10 При прочих равных условиях угол защиты α многократных молниеотводов и двойного тросового молниеотвода во внутренней области между молниеотводами значительно больше, чем у одиночного стержневого и одиночного тросового молниеотвода.
- 2.2.11 Для молниеприемной сетки, устанавливаемой на кровле здания (сооружения) углы защиты α определяются от ее внешнего периметра до поверхности земли как для одиночного тросового молниеприемника.
- 2.2.12 Значения угла защиты α одиночных (внешний угол защиты) и многократных молниеотводов (внутренний угол защиты) обеспечивающих заданную надежность молниезащиты для зданий и сооружений высотой до 15м различной категории и занимаемой площади, приведены в таблице 2.1.

П р и м е ч а н и е - Данные по углу α , приведенные в таблице 2.1, получены в результате большого числа крупномасштабных испытаний по сравнительной оценке эффективности различных схем молниезащиты. Для внешней зоны каждого из многократных стержневых молниеотводов, двойного тросового молниеотвода и молниезащитной сетки угол защигы α определяется как для одиночного молниеотвода (стержневого, тросового).

 $2.2.13~\mathrm{B}$ таблице $2.1~\mathrm{для}$ объектов I, II и III категории молниезащиты соответствует один уровень защиты, который характеризуется эффективностью P_H внешней M3C при заданном предельно допустимом числе N_{∂} прорывов молнии к объекту.

2.2.14 Ток молнии, по величине которого производится выбор средств защиты от ПУМ, определяется для соответствующего уровня защиты по данным, приведенным в приложении Б, таблица Б.1.

2.3 Отдельно стоящие молниеотводы

Отдельно стоящие молниеотводы применяются для молниезащиты зданий и сооружений любой категории.

Большинство объектов военной инфраструктуры, требующих молниезащиты, имеют высоту не более 15м. Поэтому молниезащита указанных объектов, как наиболее массовых, рассмотрена отдельно.

Примеры конструктивного решения схем молниезащиты с использованием отдельно стоящих стержневых и тросовых молниеотводов приведены в приложении Γ .

Исходными данными для расчета высоты стержневых и тросовых молниеотводов являются: категория объекта (см. п.1.4), геометрические размеры объекта $a \times b \times h_0$, грозовая обстановка в районе предполагаемого возведения объекта и удельное сопротивление грунта ρ в данной местности.

В зависимости от категории объекта и величины удельного сопротивления грунта согласно указаниям п.2.1.2.4 определяется минимально допустимое расстояние от объекта до отдельно стоящего стержневого или тросового молниеотвода ℓ .

П р и м е ч а н и е — В случае, если заземлитель отдельно стоящих молниеотводов и металло-конструкции сооружения соединены между собой, то требования к минимальному расстоянию ℓ не предъявляются.

- 2.3.1 Одиночный стержневой молниеотвод
- 2.3.1.1 Одиночные стержневые молниеотводы следует применять для молниезащиты зданий и сооружений высотой до 10м и площадью до 100м².
- 2.3.1.2 Одиночные стержневые молниеотводы не следует использовать для протяженных (вытянутых) объектов малой площади. Предпочтительной является форма объекта в виде квадрата (a = b) или близкой к нему.
- 2.3.1.3 Если одна сторона сооружения больше другой (a > b), то стержневой молниеотвод устанавливается симметрично оси сооружения с его большей стороны.
- 2.3.1.4 Схема расчета высоты одиночных стержневых молниеотводов для объекта высотой h_0 и размерами в плане $(a \times b)$ по заданной величине эффективности молниезащиты P_H приведена на рисунке 2.2.

Таблица 2.1

	Уровень защиты		Схема молниезащиты объектов высотой до 15м							
тегория объекта по молниезащите			Одно- стержне- вая					Тросовая		
							Четырех- стержне- вая	Одиночный, молниеза- щитная сетка (периметр)	Двойной (замкну- тый)	
Id all	Предельно допустимое число прорывов N _d , уд/в год	1 5. 7	площадь объекта в плане S, м ²							
Категория по молние			до 0,5	до 100	до 100	до 400	до 2000	до 2500	до 2000	до 2500
K			Угол защиты, $lpha^0$							
			внешний		внугренний			внешний	внутренний	
1	2	3	4	5	6	7	8	9	10	11
I	0,001	0,99	25	30	45	42	40	52	34	65
II	0,005	0,95	32	38	50	48	46	60	57	75
m (0,01	0,9	35	46	56	52	50	68	70	78

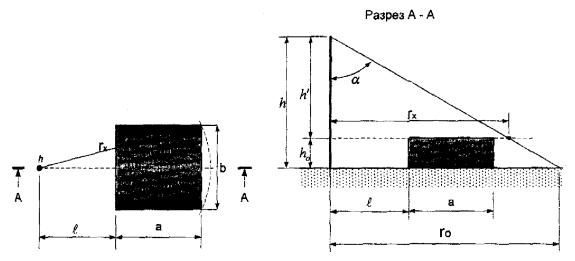


Рисунок 2.2 - Схема для расчета высоты стержневого молниеотвода

- 2.3.1.5 Порядок расчета высоты одиночных стержневых молниеотводов:
- определяется расчетная эффективность молниезащиты P'_{H} в соответствии с указаниями п. 1.6;
- по данным таблицы 2.1 для выбранной схемы внешней МЗС с эффективностью $P_H \ge P'_H$ определяется угол защиты α ;
- определяется радиус зоны защиты на высоте объекта h_{θ}

$$r_x = \sqrt{(\ell + a)^2 + (b/2)^2}$$
; (2.1)

• по углу защиты α определяется эффективная высота молниеотвода h'

$$h' = r_{r}/tq\alpha; (2.2)$$

• определяется суммарная высота молнисотвода

$$h = h' + h_0. ag{2.3}$$

- 2.3.2 Двойной стержневой молниеотвод
- 2.3.2.1 Отдельно стоящие двухстержневые молнисотводы следует применять для зданий и сооружений высотой до 15м и площадью до 500м². При высоте объекта до 5-7м (например, хранилища боеприпасов и взрывчатых веществ, открытые площадки и т.п.), защищаемая площадь может быть увеличена до 1200м².
- 2.3.2.2 Минимально допустимое расстояние ℓ от края защищаемого объекта домолниеотводов определяется согласно указаниям, приведенным в. п.2.1.2.4.

При расстоянии между двумя стержневыми молниеотводами $L \ge 4h$ каждый из них рассматривается как одиночный молниеотвод.

2.3.2.3 Схема расчета высоты двухстержневых молниеотводов при их расположении вдоль оси симметрии объекта по величине эффективности молниезащиты $P_{\scriptscriptstyle H}$ приведена на рисунке 2.3.

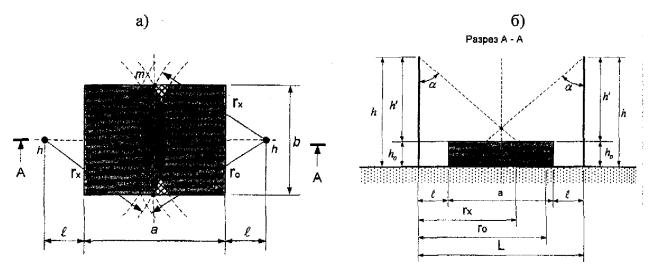


Рисунок 2.3 – Схема для расчета высоты двухстержневых молниеотводов

2.3.2.4 Порядок расчета двух одинаковых по высоте молнисотводов:

- определяется расчетная эффективность молниезащиты P'_{H} в соответствии с указаниями п. 1.6;
- для эффективности молниезащиты $P_H \ge P'_H$ по данным таблицы 2.1 определяется внутренний угол защиты α в зависимости от категории объекта и его площади;

 Π р и м е ч а н и е — Внутренний угол защиты α определяется только для пространства, заключенного между двумя стержневыми молниеотводами на расстоянии L между ними. За пределами этой зоны угол защиты α определяется как для одиночного стержневого молниеотвода.

• определяется радиус зоны защиты каждого из молниеотводов до расчетной точки n (см. рисунок 2.3) на расстоянии $r_{x1} = r_{x2} = r_x$ и высоте h_0 объекта:

$$r_x = \sqrt{(L/2)^2 + (b/2)^2}$$
, rate $L = a + 2\ell$;

• по углу защиты α определяется эффективная высота молниеотводов h':

$$h' = r_{\star}/tg\alpha$$
;

• определяется высота молниеотводов, обеспечивающая требуемую эффективность молниезащиты P'_H : $h = h' + h_0$.

- 2.3.2.5 Для двухстержневых молниеотводов, расположенных симметрично относительно оси объекта, но на разном расстоянии ℓ_1 и ℓ_2 от него, высота молниеотводов для эффективности молниезащиты P_H , определяется в следующей последовательности:
- определяется радиус зоны защиты каждого из молниеотводов

$$r_{x_1} = \sqrt{(a/2 + \ell_1)^2 + (b/2)^2}$$
, $r_{x_2} = \sqrt{(a/2 + \ell_2)^2 + (b/2)^2}$

• определяется эффективная высота молниеотводов

$$h_{x_1}' = \frac{r_{x_1}}{tq\,\alpha}$$
 - эффективная высота первого молниеотвода;

$$h_{{\rm x}2}' = \frac{r_{{\rm x}2}}{tg\,\alpha}$$
 - эффективная высота второго молниеотвода;

где α - внутренний угол защиты определяется по данным таблицы 2.1;

• определяется высота первого и второго молниеотвода

$$h_1 = h'_{x1} + h_0;$$
 $h_2 = h'_{x2} + h_0.$

- 2.3.2.6 Линия защиты n, m (см. рисунок 2.3) может быть сдвинута от оси симметрии объекта в сторону любого из молниеотводов. В этом случае высота каждого из молниеотводов h_1 и h_2 определяется согласно n.2.3.2.5.
 - 2.3.3 Многократные молниеотводы
- 2.3.3.1 Отдельно стоящие многократные стержневые молниеотводы следует применять для зданий и сооружений площадью до 2500м².
- 2.3.3.2 Расчет высоты многократных стержневых молниеотводов производится так же, как и двухстержневых молниеотводов, при условии покрытия всей поверхности защищаемого объекта на его высоте h_0 зонами защиты многостержневых молниеотводов. Типовые зоны защиты многостержневых молниеотводов в плане приведены в приложении Γ (рисунок Γ .13).
- 2.3.3.3 Для четырехстержневых молниеотводов одинаковой высоты, размещаемых симметрично относительно оси симметрии на расстоянии ℓ от объекта и ℓ_1 от его углов, их высота рассчитывается в следующей последовательности (см. рисунок Γ .13в):
- определяется радиус зоны защиты молниеотводов

$$r_x = \sqrt{(b/2 + \ell)^2 + (a/2 - \ell_1)^2}$$
,

где
$$r_x = r_{x_1} = r_{x_2} = r_{x_3} = r_{x_4}$$
; $\ell_1 \le 5$ м;

• определяется эффективная высота молниеотводов

$$h' = \frac{r_x}{tq\,\alpha}\,,$$

где α внутренний угол определяется по данным таблицы 2.1, для выбранной эффективности P_H молниезащиты;

- определяется высота молниеотводов

$$h_1 = h_2 = h_3 = h_4 = h' + h_0$$
.

- 2.3.3.4 При разной высоте каждого из 4-х молниеотводов или при их разном удалении ℓ от защищаемого объекта, расчет высоты каждого из 4-х молниеотводов производится аналогично расчету 2-х стержневых молниеотводов, приведенному в п.2.3.2.5, при условии покрытия зонами защиты всей поверхности защищаемого объекта на его высоте h_0 .
- 2.3.3.5 Количество стержневых молниеотводов для одного объекта не ограничивается и определяется его размерами независимо от категории объекта. При количестве молниеотводов больше четырех, каждая последующая пара, совместно с предыдущей парой, рассматривается как четырехстержневая МЗС, внутренний угол защиты α которой определяется по данным таблицы 2.1.
- 2.3.3.6 Примеры расчета молниезащиты объектов отдельно стоящими стержневыми молниеотводами приведены в приложении E.
 - 2.3.4 Тросовые молниеотводы
- 2.3.4.1 Молниезащита в виде одиночного троса, параллельного оси симметрии здания, наиболее эффективна для объектов прямоугольной формы, длина которых значительно превышает ширину $a \ge 2b$. В этом случае, при малой высоте подвеса троса по оси симметрии объекта, обеспечивается высокая эффективность молниезащиты.
- 2.3.4.2 Минимально допустимое расстояние ℓ от защищаемого объекта до опор для подвеса троса выбирается согласно требованиям, изложенным в п.2.1.2.4 для отдельно стоящих стержневых молниеотводов. Максимальное расстояние ℓ ограничивается только эксплуатационными характеристиками тросовой молниезащиты.

2.3.4.3 Схема расчета высоты подвеса троса по заданной величине эффективности молниезащиты P_H приведена на рисунке 2.4.

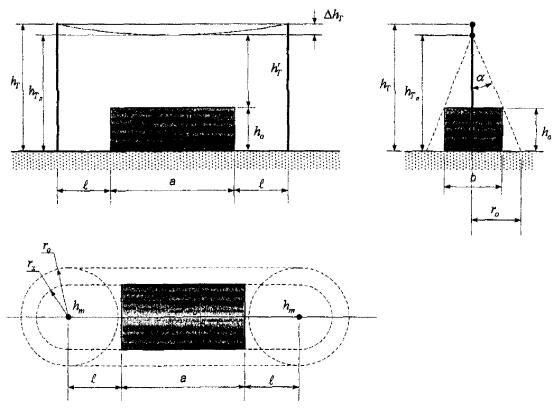


Рисунок 2.4 - Схема для расчета высоты подвеса троса

2.3.4.4 Порядок расчета высоты подвеса троса:

- определяется расчетная эффективность P'_{H} молниезащиты в соответствии с указаниями п.1.6;
- для эффективности молниезащиты $P_H \ge P_H'$ определяется угол защиты α по данным таблицы 2.1;
- по углу защиты α и ширине объекта b определяется высота подвеса троса над объектом:

$$h_T' = b/2tg\alpha$$
;

• с учетом стрелы провиса троса определяется высота подвеса на опорах:

$$h_T = h_T' + h_0 + \Delta h_T .$$

Величина провиса $\Delta h_{\!\scriptscriptstyle T}$ в зависимости от расстояния L между опорами троса принимается:

при
$$L < 120 \,\mathrm{M}$$
 $\Delta h_T = 2 \mathrm{M}$;

при $120 < L \le 150 \,\mathrm{M}$ $\Delta h_r = 3 \,\mathrm{M}$.

Если для объектов I категории расчетная высота подвеса троса над объектом h_T' меньше чем предельно допустимое расстояние ℓ_s от троса до объекта защиты, установленное требованиями п. 2.1.2.5, то высота подвеса троса увеличивается до $h_T' = \ell_s$, что еще больше повышает эффективность P_H защиты троса.

П р и м е ч а н и е -Рекомендуемое расстояние между двумя опорами для подвеса троса не должно превышать 150м.

2.3.4.5 Для двойного тросового молниеотвода внешний угол защиты α определяется по данным таблицы 2.1 для одиночного троса, а внутренний угол защиты α определяется по данным таблицы 2.1 для области пространства заключенного между параллельными тросами.

 Π р и м е ч а н и е — Зона защиты замкнутого тросового молниеотвода формируется путем наложения зон защиты двух двойных тросовых молниеотводов, перпендикулярных друг другу.

2.4 Молниезащита зданий (сооружений) высотой до 60м

- 2.4.1 Требования Норм по молниезащите зданий (сооружений) высотой до 60м распространяются на объекты военной инфраструктуры на объекты II и III категорим молниезащиты.
- 2.4.2 Высокие сооружения следует использовать для молниезащиты более низких зданий (сооружений), если они обеспечивают требуемую эффективность, определяемую углом защиты α .
- 2.4.3 Молниезащита высоких объектов осуществляется преимущественно молниеотводами, устанавливаемыми на здании (сооружении). Молниеотводы выполняются в виде стержневых, тросовых молниеотводов, молниезащитной сетки или их произвольной комбинации. В исключительных случаях по требованию заказчика и при соответствующем обосновании защита высоких объектов может осуществляться отдельно стоящими молниеотводами, если они обеспечивают выполнение требований настоящих Норм.

 Π р и м е ч а н и е — Общая высота объекта с установленной на нем молниезащитной системой не должна превышать 60м.

2.4.4 Стержневые молниеотводы, устанавливаемые на здании (сооружении) должны иметь индивидуальные спуски к заземлителю. Многостержневые молниепри-емники рекомендуется гальванически соединять между собой металлической проволо-

кой (шиной) сечением не менее 25мм². Тросовые молниеприемники следует применять для коньковой или плоской кровли с отдельными токоспусками от каждой из опор для подвеса троса.

2.4.5 Высота и количество стержневых молниеотводов, а также высота подвеса тросов и их количество определяются углом защиты α , обеспечивающим молниезащиту сооружения заданной категории. Для молниеотводов, устанавливаемых на здании (сооружении) угол защиты α определяется исходя из требуемой эффективности молниезащиты по данным, приведенным в таблице 2.1. Высота молниеотводов определяется согласно положениям α . α . α . α . α .

П р и м е ч а н и е — Величина угла защиты α стержневых и тросовых молниеотводов относительно плоской части кровли здания на его высоте h_0 также определяется по данным таблицы 2.1.

- 2.4.6 Молниезащитную сетку рекомендуется устанавливать на зданиях (сооружениях) любой площади, в том числе разновысоких. Размеры ячейки сетки, в зависимости от категории объекта даны в п.2.1. Расстояние между токоотводами (спусками) не должно превышать 12-24м. Токоотводы должны быть соединены с заземлителем, выполненным по внешнему контуру здания, или заземлены на арматуру фундамента здания.
- 2.4.7 Если молниеприемники установлены на здании (сооружении), конструкции которого выполнены из изоляционных материалов, то собственно молниеприемники и токоотводы должны быть проложены по контуру здания с его внешней стороны, а в случае коньковой крыши и по ее коньку.

На противоположных углах здания молниеприемник присоединяется к заземлителю с помощью токоотводов. По периметру вентиляционной или дымовой трубы на ее вершине прокладывается стальная проволока и присоединяется кратчайшим путем к молниеприемному устройству.

Если кровля выполнена из легковоспламеняющегося материала, то проводники молниеприемного устройства следует прокладывать на изоляторах, обеспечивающих между кровлей и молниеприемником расстояние не менее 15см (см. приложение Г).

2.4.8 Для зданий и сооружений, имеющих металлический каркас, молниеприемники должны быть соединены на сварке с металлоконструкциями перекрытий здания, а

спуски проходить с его внешней стороны и иметь гальваническую связь (на сварке) с арматурным каркасом на уровне каждого этажа.

2.4.9 Молниеприемники и их спуски могут быть изолированы от металлического каркаса здания (сооружения) с целью исключения протекания тока молнии по его металлоконструкциям. Устройство такой системы молниезащиты может применяться только у сооружений, для которых необходимо обеспечить контролируемый путь протекания тока с целью локализации негативных проявлений вторичных эффектов разряда молнии.

П р и м е ч а н и е – Для исключения искрений при протеквнии тока молнии необходимо предусмотреть надежное соединение стальной арматуры железобетонных деталей каркаса во время строительства. Для этого не менее 50% арматурных стрежней должны быть соединены на сварке.

- 2.4.10 При использовании металлической кровли в качестве устройства молниезащиты необходимо выполнить следующие условия:
- электрическая непрерывность между разными частями кровли должна быть обеспечена на долгий срок;
- толщина металла кровли должна составлять не менее 4мм, при необходимости предохранить кровлю от повреждения или прожога;
- толщина металла кровли должна составлять не менее 0,5мм, если не обязательно ее защищать от повреждений, и нет опасности воспламенения находящихся под кровлей горючих материалов;
- не должно быть изоляционного покрытия поверх металлической кровли. Допускается небольшой слой антикоррозионной краски или слой 1мм пластикового покрытия;
- неметаллические покрытия на (или под) металлической кровлей не должны выходить за пределы защищаемого объекта.
- 2.4.11 Железную кровлю допускается использовать для молниезащиты здания при условии ее заземления не менее чем в двух противоположных углах. Для защиты выступающих над металлической кровлей устройств по периметру их верхней грани прокладывается стальная проволока, которая присоединяется к металлической кровле. Токоотводы, соединяющие металлическую кровлю с заземлителями, должны быть выполнены из стальной проволоки диаметром 8-10мм.

2.4.12 Для предотвращения разрушений декоративной облицовки или других непроводящих элементов в местах возможных поражений молнией должны быть установлены дополнительные молниеприемники, соединенные с металлическим каркасом здания, который служит токоотводом.

Примечание - В качестве таких молниеприемников могут быть использованы как конструктивные элементы здания (парапеты, перила балконов, пожарные лестницы и т. д.), так и специально проложенные металлические проводники и облицовка из листового металла.

2.4.13 Все внутренние трубопроводы, протяженные металлические элементы (например, каркасы лифтов), а также металлические экраны электропроводки и оболочки кабелей с целью выравнивания потенциалов должны быть присоединены к металлическому каркасу высокого объекта, являющегося токоотводом, по этажам на разных горизонтальных уровнях (но не реже, чем через 5м). Металлоконструкции каркаса объекта присоединяется к заземляющему контуру через каждые 8-24м (в зависимости от категории молниезащиты) по его периметру (либо фундаменту, если последний выполняет функцию заземляющего устройства, см. приложение Г).

2.5 Защита от разрядов молнии специальных фортификационных сооружений

- 2.5.1 Специальные фортификационные сооружения (СФС) следует относить к объектам I и II категории молниезащиты. Требования к устройству молниезащиты СФС определены в ВСП 45-02-01/МО РФ.
- 2.5.2 Защита СФС от ударов молнии разрабатывается в специализированных проектных организациях в соответствии с требованиями, изложенными в ТЗ на проектирование.
- 2.5.3 Для коммуникаций вводимых в СФС, должны быть предусмотрены устройства защиты вводов в соответствии с требованиями ВСП 45-02-01/МО РФ.

2.6 Молниезащита объектов арсеналов, баз и складов ракет и боеприпасов

2.6.1 Объекты арсеналов, баз и складов видов Вооруженных сил и родов войск, где хранятся и ведутся работы с ракетами и боеприпасами (в обычном снаряжении), взрывчатыми веществами и пиротехническими составами, относятся к объектам I категории молниезащиты. Общие требования к молниезащите этих объектов изложены в разделе 2.1.

- 2.6.2 Проектирование молниезащиты (выбор типа молниеприемника) для объектов хранения боеприпасов категории опасности Е1-Е7 производится с учетом особенностей (технических, эксплуатационных) хранимого имущества, способа его хранения, требований [2] и настоящего раздела.
- 2.6.3 В зону защиты МЗС следует включать примыкающие к зданиям и сооружениям площадки с находящимися на них транспортными средствами, используемыми при погрузке и выгрузке имущества, а также опоры автоматической пожарной сигнализации (АПС). Эффективность защиты от ПУМ этих площадок и опор АПС принимать на уровне P_H =0,95 (см. п.2.2 и 2.3).
- 2.6.4 Молниезащита погрузочно-разгрузочных платформ, (ПРП) мест временной стоянки железнодорожного и автомобильного транспорта с боеприпасами категории опасности Е2, Е5-Е7 должна выполняться отдельностоящими стержневыми или тросовыми молниеотводами.

Допускается молниезащиту закрытых погрузочно-разгрузочных платформ выполнять с помощью молниеприемных тросов, молниезащитной сетки или вертикальных молниеотводов (мачт), установленных на кровле здания с их обязательным заземлением на контур, проложенный по периметру здания.

Металлическая, кровля ПРП заземляется с соблюдением требований п.2.6.6, при этом токоотводы присоединяются к металлоконструкциям фундамента здания или, при их отсутствии, к контуру заземления.

2.6.5 Открытые площадки в зависимости от размеров, конфигурации, решаемых задач по защите имущества и прилегающих территорий (см. п.2.6.3) следует оборудовать тросовой или стержневой молниезащитой. Молниезащита должна состоять из одного - двух тросовых молниеотводов (для протяженных площадок) или двух и более стержневых молниеотводов (для площадок с площадью, занимаемой имуществом, более 1200м²).

Примечания

¹ Размеры молниеотводов системы молниезащиты открытых площадок определяются по методике, приведенной в п.2.2, 2.3. Примеры расстановки молниеотводов при различном расположении имущества на площадке приведены в приложении Г (рисунок Г.36).

² Каждый из отдельно стоящих многократных стержневых и тросовых молниеотводов должен иметь собственный заземлитель, величина сопротивления заземления R_3 которого определяется требованиями п.2.1.2.2.

³ Расстояние ℓ от молниеотводов до ближайшей части защищаемого объекта определяется требованиями п.2.1.2.4.

- 2.6.6 Металлическая кровля каркасных укрытий штабелей должна быть заземлена, при этом, кровлю следует усиливать металлической полосой (уголком). Заземление кровли должно быть выполнено не менее чем четырьмя токоспусками с присоединением к контуру заземления, проложенному на расстоянии не менее 1м от внешних границ штабелей с имуществом. Выбор схемы заземления изложен в пунктах 3.26-3.32.
- 2.6.7 Прокладка инженерных коммуникаций в земле на территории открытых площадок под имуществом запрещается. Расстояние ℓ_s в плане от имущества до подземных коммуникаций и заземлителей МЗС выбирается по требованиям п.2.1.2.6.
- 2.6.8 Молниезащиту наземных обвалованных железобетонных, бетонных и кирпичных хранилищ допускается осуществлять с помощью мачт, молниеприемных тросов или молниеприемной сетки, установленных на кровле здания.

Количество молниеприемных тросов, установленных на здании, должно быть не менее двух; высота их подвеса и зона защиты определяется углом защиты α по данным таблицы 2.1.

Тросы (металлическая полоса, уголок) устанавливаются на металлических стойках, связанных с арматурой здания. Для каждой металлической стойки прокладываются токоотводы по внешнему периметру здания и заземляются на арматуру фундамента здания (арматурную сетку бетонной подготовки под фундамент) или на специально выполненный контур заземления в соответствии с требованиями п.п. 3.26-3.32. Расстояние между токоспусками не должно превышать 8м. Сопротивление заземлителей определяется требованиями п.2.1.2.2.

Металлическая, кровля хранилища заземляется с соблюдением требований п.2.6.6, при этом токоотводы присоединяются к металлоконструкциям фундамента здания или, при их отсутствии, к контуру заземления.

2.6.9 Молниезащиту обсыпных, полузаглубленных, заглубленных и подземных хранилищ, ограждающие конструкции которых выполнены из сборного или сборномонолитного железобетона, следует выполнять в виде молниезащитной сетки, уложенной непосредственно на кровле хранилища или в грунте (в том числе и на поверхности грунта). Ячейка металлической сетки должна быть не более 4х4м, суммарное сопротивление выносных заземлителей (контура заземления) рассчитывается в соответствии с п.2.1.2.2. Сетка должна быть заземлена не менее чем четырьмя токоспусками. В качестве заземлителей допускается использовать металлоконструкции бетонной подготовки

фундаментной плиты или специально выполненные заземлители (контур заземления), соединенные с фундаментом здания. Для снижения сопротивления заземлителя его следует выполнять по основанию дренажного коллектора обсыпного (заглубленного, полузаглубленного) хранилища.

- 2.6.10 Молниезащиту зданий цехов, где проводятся работы с ракетами и боеприпасами, следует выполнять в соответствии с требованиями п.2.6.4.
- 2.6.11 Для молниеотводов, установленных на железобетонных фундаментах, их арматуру следует использовать в качестве заземлителя. Для опор молниеотводов, выполненных из изоляционных материалов, должна быть обеспечена связь молниеприемника с заземлителем посредством токоотводов для стекания тока молнии в землю.
- 2.6.12 Для открытых площадок с имуществом категории опасности В или Д допускается устанавливать отдельно стоящие молниеотводы не только по внешнему периметру, но и между штабелями внутри площадки. В качестве молниеотводов допускается использовать металлическую кровлю штабелей при соблюдении требований п.2.6.6, причем суммарное сопротивление заземлителей кровли должно быть не более 20 Ом.
- 2.6.13 Ввод кабелей энергоснабжения в здания (сооружения) цехов и хранилищ должен осуществляться в металлических трубах (кабельных каналах) или бронированным кабелем и соответствовать требованиям [2].

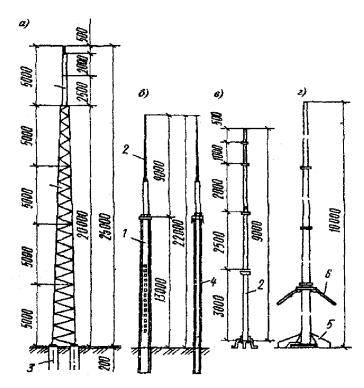
Заглубленные металлические трубы (оболочки кабелей) на входе в здания (сооружения) должны быть присоединены к арматуре фундамента здания (сооружения) или к заземляющему устройству (контуру заземления).

2.6.14 Подвод трубопроводов водоснабжения и отопления в здания (сооружения) должен выполняться по требованиям [2] и СНиП, и прокладываться на участке протяженностью не менее 50м перед зданием (сооружением), на глубине не менее 0,7м с обязательным контактным соединением труб на входе в здание (сооружение) с арматурой фундамента или с заземляющим устройством.

3 Требования к конструктивному выполнению внешней молниезащитной системы

3.1 Внешняя молниезащитная система (МЗС) состоит из молниеприемников, то-коотводов и заземлителей.

При устройстве отдельно стоящих молниеотводов (внешняя МЗС отделена от сооружения), их несущая конструкция объединяет молниеприемник и токоотвод в единую, жесткую, механически прочную конструкцию.


- 3.2 Конструктивные решения внешней МЗС (молниеотводов) разрабатываются проектной организацией (или выбираются типовыми) с учетом требований изложенных ниже. Конструкции всех элементов внешней МЗС должны быть экономичными, надежными и долговечными.
- 3.3 Металлические части всех элементов внешней МЗС должны быть предохранены от коррозии. Места повышенной коррозионной опасности такие, как ввод в грунт или бетонированный участок, соединения в грунте, соединения различных материалов должны быть выполнены с применением антикоррозионной защиты.
- 3.4 Соединение токоотводов между собой, а также с молниеприемниками и заземлителем должно выполняться с помощью сварки, болтовых соединений или плашечных зажимов заводского изготовления удовлетворяющих требованиям ГОСТ 10434
 «Соединения контактные электрические. Классификация. Общие технические требования». Во всех случаях предпочтительнее соединение на сварке. Площадь контакта
 должна быть не меньше удвоенной площади сечения токоотводов с переходным сопротивлением не более 0,05 Ом. Если для целей контроля сопротивления заземлителей не
 требуется их отсоединения от токоотводов, то соединение между ними следует выполнять на сварке. Узлы и детали соединений конструкций молнисотводов приведены в
 приложении Г.

Опоры и молниеприемники

- 3.5 Опоры стержневых молниеотводов должны быть рассчитаны на механическую прочность и ветровую нагрузку как свободно стоящие конструкции, а тросовых - с учетом натяжения троса, гололедной и ветровой нагрузки.
- 3.6 В зависимости от высоты молниеотводов, значимости защищаемого объекта и места его возведения, опоры выполняются (рисунок 3.1 и приложение Г, п.Г.5):
- металлическими, в виде решетчатых конструкций;

- из сборного железобетона;
- металлическими, выполненными из труб разного диаметра;
- металлическими, с укреплением их на стенах или на крышах защищаемых зданий и сооружений.

Стальные опоры подлежат защите от коррозии покраской или любым другим способом.

a — опора металлическая решетчатая; b — опора железобетонная; b - молниеприемник для железобетонной опоры; c - молниеприемник из газовых труб 1 опора (стойка); b — молниеприемник; b — фундамент опоры; b — токоотвод (спуск); b — фланец, b — оттяжка

Рисунок 3.1 – Виды конструкций опор молниеотводов и молниеприемников

Деревянные опоры, установленные на железобетонных пасынках эксплуатируются только на ранее возведенных объектах. Для вновь возводимых объектов и замены молниеотводов на реконструируемых объектах деревянные опоры не применяются.

3.7 Молниеприемники состоят из произвольной комбинации следующих элементов: стержней, натянутых проводов (тросов), сетчатых проводников (сеток).

На металлических опорах установки стержневых молниеприемников не требуется. На опорах из железобетона или изоляционного материала стержневой молниеприемник должен выступать не менее чем на 0,2м.

- 3.8 Стержневые молниеприемники изготавливаются из стали или другого металла любой марки и профиля. Молниеприемники из стали должны быть сечением не менее 78мм² (диаметр 10мм), из алюминия и меди сечением не менее 50мм² (диаметр 8мм). В агрессивной среде молниеприемники из черного металла должны быть защищены от коррозии либо их сечение увеличено до 100мм².
- 3.9 Тросовые молниеприемники должны выполняться из круглой стальной проволоки, многопроволочного провода или троса любой марки. Сечение троса определяется из расчета на механическую прочность с учетом гололедной и ветровой нагрузки, но должны быть не меньше 35мм².
- 3.10. Молниеприемная сетка выполняется из стальной проволоки диаметром не менее 8мм для объектов I категории и не менее 6мм для объектов II и III категории, стальной полосы или уголка толщиной не менее 4мм и укладывается поверх кровли здания. Узлы сетки должны быть соединены сваркой (или с использованием плашечных зажимов типа ПС-1-1 и т.п.). К сетке должны быть присоединены выступающие над кровлей металлические конструкции здания.
- 3.11 В качестве естественных молниеприемников используются следующие конструктивные элементы зданий и сооружений:
 - а) металлические кровли защищаемых объектов при условии, если:
- электрическая непрерывность между разными частями обеспечена на долгий срок;
- толщина металла кровли составляет не менее величины t, приведенной в таблице 3.1, если необходимо предохранить кровлю от повреждения или прожога;
- толщина металла кровли составляет не менее 0,5мм, если ее необязательно защищать от повреждений, и нет опасности воспламенения находящихся под кровлей горючих материалов;
- кровля не имеет изоляционного покрытия. Небольшой слой антикоррозионной крас ки или слой 1мм пластикового покрытия не считается изоляцией;
- неметаллическое покрытие над/или под металлической кровлей не выходит за пределы защищаемого объекта;
 - б) металлические конструкции кровли (фермы, арки и т.п.);

- в) металлические элементы типа водосточных труб, украшений, ограждений по краю крыши и т.п., если их сечение не меньше значений, предписанных для обычных молниеприемников;
- г) технологические металлические трубы и резервуары, если они выполнены из металла толщиной не менее 2,5мм и проплавление или прожог этого металла не приведет к опасным последствиям;
- д) металлические трубы и резервуары, если они выполнены из металла толщиной не менее значения, приведенного в таблице 3.1, и если повышение температуры с внутренней стороны объекта в точке удара молнии не представляет опасности.

Таблица 3.1

Материал	Толщина t, мм, не менее		
Сталь	4		
Медь	5		
Алюминий	7		

Токоотводы

- 3.12 Для отдельно стоящих молниеотводов, использующих металлические опоры, прокладка токоотводов не требуется. У железобетонных опор в качестве токоотводов следует использовать арматуру, если она имеет сварные соединения по всей длине. В другом случае необходима прокладка не менее одного токоотвода. При защите сооружений первой категории запрещается использовать арматуру железобетонных конструкций в качестве единственного токоотвода ввиду невозможности контроля над ее состоянием.
- 3.13 Токоотводы прокладываются по кратчайшему пути от молниеприемника к заземлителю. На всем протяжении они не должны образовывать петель или острых углов.
- 3.14 Если молниеприемник состоит из нескольких стержней, установленных на изолированной опоре, то на каждый стержень должен быть предусмотрен минимум один токоотвод.

Если молниеприемник состоит из отдельно стоящих горизонтальных проводов (тросов) или из одного провода (троса), на каждый конец троса требуется минимум по одному токоотводу.

Если молниеприемник выполнен в виде сетчатой конструкции, подвешенной над защищаемым объектом, то на каждую ее опору требуется не менее одного токоотвода.

- 3.15 Токоотводы должны располагаться таким образом, чтобы между точкой поражения и землей, ток растекался по нескольким параллельным путям, а длина этих путей была минимальной.
- 3.16 Для сооружений с металлической кровлей или молниезащитной сеткой токоотводы должны располагаться равномерно по периметру защищаемого объекта таким образом, чтобы расстояния между ними было не больше значений, приведенных в таблице 3.2.

Таблица 3.2

Категория защиты	Среднее расстояние, м
I	8
II	12
[III	24

Токоотводы соединяются горизонтальными поясами вблизи поверхности земли и через каждые 20м по высоте здания.

- 3.17 Неизолированные от защищаемого объекта токоотводы прокладываются следующим образом:
- если стена выполнена из негорючего материала, токоотводы должно быть закреплены на поверхности стены или проходить в стене;
- если стена выполнена из горючего материала, токоотводы должны быть закреплены непосредственно на поверхности стены, так чтобы повышение температуры при протекании тока молнии не представляло опасности для материала стены;
- если стена выполнена из горючего материала и повышение температуры токоотводов представляет для него опасность, токоотводы должны располагаться таким образом, чтобы расстояние между ними и защищаемым объектом было больше 0,1м. Металлические скобы для крепления токоотводов могут быть в контакте со стеной.
- не следует прокладывать токоотводы в водосточных трубах. Рекомендуется размещать токоотводы на максимальном удалении от дверей и окон.
- 3.18 В качестве естественных токоотводов допускается использовать следующие конструктивные элементы зданий, которые считаются естественными токоотводами:

- металлические конструкции при условии, если обеспечена электрическая непрерывность между разными элементами на долгий срок, а их сечение соответствует установленным требованиям;
- металлический каркас здания или сооружения;
- соединенная между собой стальная арматура здания или сооружения;
- части фасада, профилированные элементы и опорные металлические конструкции фасада при условии, что их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0,5мм.
- 3.19 Металлическая арматура железобетонных строений считается обеспечивающей электрическую непрерывность, если она удовлетворяет следующим условиям:
- 50% соединений вертикальных и горизонтальных стержней выполнены сваркой или имеют жесткую связь (болтовое крепление, вязка проволокой);
- электрическая непрерывность обеспечена между стальной арматурой различных заранее заготовленных бетонных блоков (панелей).

В прокладке горизонтальных поясов нет необходимости, если металлические каркасы здания или стальная арматура железобетона используются как токоотводы.

3.20 Токоотводы, проложенные по наружным стенам зданий с металлическим каркасом, должны быть соединены на сварке с металлоконструкциями каждого этажа здания (сооружения).

Для токоотводов, проложенных по наружным стенам защищаемого здания, используются:

- круглые неизолированные стальные проводники диаметром не менее 8мм;
- проводники из полосовой стали сечением не менее 50мм² при толщине не менее
 4мм.

При необходимости могут быть использованы проводники любого профиля толщиной не менее 4мм и сечением не менее 50мм².

При эксплуатации в агрессивных средах наружные токоотводы должны быть защищены от коррозии оцинковкой либо их диаметр или толщина должны быть увеличены в 1,5-2 раза по сравнению с указанными выше.

3.21 Токоотводы могут выполняться из стали любой марки или проводов необходимого сечения. Сечение неразветвленных токоотводов, пропускающих полный ток молнии, должно быть не меньше 50мм².

Сечение разветвленных токоотводов, по которым может проходить не более половины тока молнии, должно быть не меньше 25мм².

Сечение токоотводов-проводников для устройства защиты от вторичных проявлений молнии должно быть не меньше 16мм².

3.22 Токоотводы следует располагать в местах, легкодоступных для осмотра. Крепление токоотводов к конструкции молниеотводов, к кровле и стенам зданий должно быть надежным и осуществляться с помощью специальных клемм, зажимов и т. п. Расстояние между точками крепления токоотвода должно быть по вертикали 1,5-2м, а по горизонтали-1м.

Образцы креплений токоотводов приведены в приложении Г.

3.23 В случае, когда не исключена возможность механических повреждений токоотводов, последние на высоте до 2м от поверхности земли защищаются угловым железом, трубами или профильными желобами.

В местах присоединения токоотводов к молниеприемникам и заземлителям, выполненным на зажимах, покраска токоотводов и контактных поверхностей зажимов не
допускается и должна быть заменена оцинкованием, лужением или антикоррозийной
металлизацией.

3.24 Присоединение токоотводов к железной кровле должно производиться с помощью специальных зажимов с площадью соприкосновения не менее 60см². Конструкция зажима не должна допускать повреждения кровли (см. рисунок Г.35 приложения Г).

Заземлители

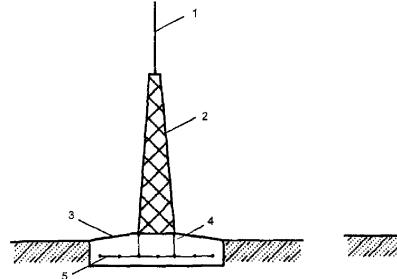
3.25 Во всех случаях, за исключением отдельно стоящего молниеотвода, заземлитель которого отделен от заземлителя здания (сооружения), заземлитель молниезащиты следует совмещать с заземлителями электроустановок. Если заземлители должны быть разделены по технологическим соображениям, то их следует объединить в общую систему с помощью системы уравнивания потенциалов.

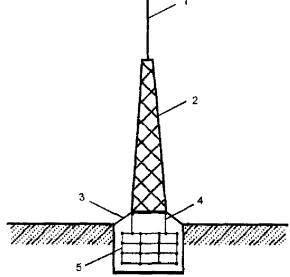
 Π р и м е ч а н и е - В грунтах с высоким удельным сопротивлением заземлители могут перехватывать токи молнии текущие в земле, вызванные близким ударом молнии в землю или в отдельно стоящий молниеотвод.

3.26 Рекомендуется использовать следующие типы заземлителей: горизонтальные или вертикальные (наклонные) электроды, радиально расходящиеся электроды, заземляющий контур или заземляющие сетки.

Глубинные заземлители являются эффективными, если удельное сопротивление грунта уменьщается с глубиной и на большой глубине оказывается существенно меньше, чем у поверхности земли.

Заземлитель в виде наружного замкнутого по периметру контура следует прокладывать на глубине не менее 0,5м от поверхности земли и на расстоянии не менее 1м от стен защищаемого здания. Вертикальные заземляющие электроды должны располагаться на глубине не менее 0,5м за пределами защищаемого объекта и должны быть равномерно распределенными по его периметру.

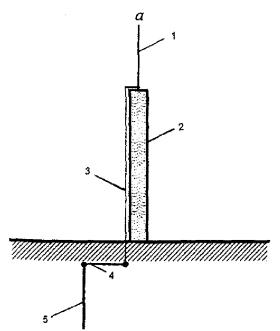

Глубина закладки и тип заземляющих электродов выбираются из условия обеспечения минимальной коррозии и незначительной сезонной вариации сопротивления заземления в результате высыхания и промерзания грунта.

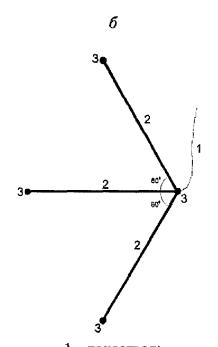

3.27 Минимальное сечение заземляющих электродов приведено в таблице 3.3. Таблица 3.3

Материал	Профиль сечения	Диаметр, мм	Площадь поперечного сечения, мм ²	Толщи- на стен- ки, мм
	Круглый:			
	для вертикальных заземлителей	16	-	-
Сталь	для горизонтальных заземлителей	10	-	-
черная	Прямоугольный	-	100	4
•	Угловой	-	100	4
	Трубный	32		3,5
	Круглый:			
Сталь	для вертикальных заземлителей	12	-	
оцинкован-	для горизонтальных заземлителей	10	-	-
ная	Прямоугольный	_	75	3
	Трубный	25	-	2
	Круглый	12	-	-
N. 4	Прямоугольный	_	50	2
Медь	Трубный	20	_	2
	Канат многопроволочный	1,8*	35	-
* Диа	метр каждой проволоки			

3.28 В качестве естественных заземлителей следует применять железобетонные фундаменты зданий, сооружений, наружных установок, опор молниеотводов. Рекомен-

дуемые варианты конструктивного решения заземлителей молниеотводов приведены на рисунках 3.2 и 3.3.




1 – молниеприемный стержень;
 2 - металлическая опора;
 3 – железобетонный подножник;
 4 – токоотвод;
 5 – однорядная арматурная сетка

1 - молниеприемный стержень: 2 - металлическая опора; 3 - железобетонный фундамент; 4 - токоотвод; 5 - каркасная арматурная сетка

Рисунок 3.2 - Рекомендуемые варианты конструктивного решения заземлителей для стержневых молниеприемников

1 - токоприемный стержень; 2 - неметаллическая опора; 3 — токоспуск; 4 - горизонтальный заземлитель; 5 - вертикальный заземлитель

1 – токоотвод;2 – горизонтальные заземлители;3 – вертикальные заземлители

Рисунок 3.3 - Рекомендуемое конструктивное решение заземлителя молниеприемников при отсутствии железобетонного подножника

3.29 Железобетонные фундаменты отдельно стоящих опор, а также зданий и сооружений, используемые в качестве естественных заземлителей, могут иметь свайную, ленточную или любую другую конструкцию и гидроизоляцию в виде битумных или битумно-латексных покрытий.

Железобетонные фундаменты должны быть дополнены искусственными заземпителями в случае, если:

- площадь поверхности контакта фундамента струнтом составляет менее 10м²;
- фундамент имеет эпоксидное или другое полимерное покрытие;
- грунт имеет влажность менее 3%.
- 3.30 Для отдельно стоящего молниеотвода, допускается использовать в качестве его заземлителя одиночную железобетонную сваю длиной не менее 5м и диаметром не менее 0,25м, а также одиночный железобетонный подножник длиной не менее 2,2м, шириной основания не менее 1,8м и толщиной не менее 0,4м. Если перечисленные требования не выполняются, то фундаменты должны быть дополнены искусственными заземлителями, сопротивление которых определяются категорией молниезащиты объекта, в соответствии с требованиями п.2.1.2.2.
- 3.31 При сооружении искусственных заземлителей в районах с большим удельным сопротивлением земли рекомендуется:
- устройство вертикальных заземлителей большой длины, если с глубиной удельное сопротивление грунта снижается;
- устройство выносных заземлителей, если вблизи от объекта молниезащиты есть
 места с меньшим удельным сопротивлением земли (или водоем);
- укладка в траншей скальных структур вокруг горизонтальных заземлителей влажного глинистого грунта с последующей трамбовкой и засыпкой щебнем до верха траншей;
- применение искусственной обработки грунта с целью снижения его удельного сопротивления, если другие способы не могут быть применены или не дают необходимого эффекта.
- 3.32 В районах многолетней мерзлоты, кроме рекомендаций, приведенных в 3.31, следует:
- использовать в целях заземления обсадные трубы скважин;

- _ применять протяженные заземлители на глубине до 0,5м, предназначенные для работы в летнее время при оттаивании поверхностного слоя земли;
- _ создавать искусственные талые зоны.
- _ помещать заземлители в непромерзающие водоемы и талые зоны;
- 3.33 В скальных структурах допускается прокладывать горизонтальные заземлители на глубине от 0,15м.

4 Защита объектов военной инфраструктуры от вторичных проявлений разрядов молнии

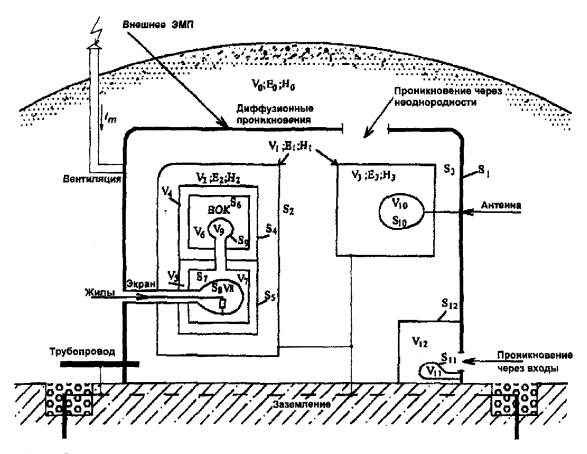
4.1 Общие положения

- 4.1.1 Защите от вторичных проявлений разрядов молнии подлежат:
- специальные объекты управления и связи, содержащие радиоэлектронные и электротехнические системы, обеспечивающие решение стратегических задач;
- арсеналы, базы и склады ракет и боеприпасов и взрывчатых веществ, воздействие вторичных эффектов молнии на которые может привести к самопроизвольному срабатыванию (взрыву) боеприпасов (ракет).
- 4.1.2 Проектирование молниезащиты сооружения с конкретными техническими характеристиками в заданных условиях функционирования должно производиться с учетом внешней электромагнитной обстановки, в которой находится сооружение. До начала разработки проекта молниезащиты от электромагнитных воздействий должен быть определен необходимый уровень защищенности сооружения (см. п.2.2).
- 4.1.3 Для обеспечения функциональной устойчивости объектов военной инфраструктуры и устойчивости систем управления и связи ВС РФ к воздействию электромагнитных полей (ЭМП), токов и перенапряжений, сопровождающих разряды молнии, необходимо:
- обеспечить комплектацию спецобъектов оборудованием стойким к воздействию помех, создаваемых разрядом молнии;
- выполнить комплекс инженерно-технических мер по снижению внешних электромагнитных воздействий.
 - 4.1.4 Комплекс инженерно-технических мер должен включать:
- использование принципов зонирования при размещении ТС в спецобъектах;

<u>ВСП 22 - 02 - 07</u> МО РФ

- электромагнитные экраны для защиты от излучаемых электромагнитных помех;
- устройства защиты входов и вводов инженерных коммуникаций;
- использование кабелей и волоконно-оптических линии связи, прокладываемых в защищенных кабелепроводах;
- обеспечение основной системы уравнивания потенциалов в местах установки технических средств;
- обеспечение защитного, молниезащитного, рабочего и функционального заземления.

4.2 Зонирование и электромагнитное экранирование


Зонирование

4.2.1 Пространство, в котором расположены ТС, необходимо разделять на зоны с различными уровнями защиты от ЭМИМ. Номер зоны защиты характеризует уровень электромагнитных полей, токов и напряжений в данной области пространства.

Общие принципы построения зон защиты приведены на рисунке 4.1.

Примечания

- 1 Зона V_0 область пространства (объем), где объект подвержен прямому удару молнии и/или воздействию сопровождающих разряд молнии электромагнитных полей. В этой области токи и электромагнитные поля молнии имеют максимальное значение.
- 2 Зоны V_{1-11} объемы, где объект не подвержен прямому воздействию молнии, а токи во всех проводящих элементах каждой последующей зоны меньше, чем в предыдущей. Электромагнитные поля ослаблены экранированием (степень ослабления электромагнитного поля от зоны к зоне увеличивается).
- 3 Электромагнитное поле внутри объема, ограниченного общим электромагнитным экраном S_1 , определяется путем наложения полей обусловленного дифракцией через поверхности общего экрана и проникающего через конструкционно-технологические неоднородности. Это результирующее поле (E_1, H_1) является внешним полем для объемов V_1, V_2, V_3 и V_{12} а результирующее поле (E_2, H_2) и (E_3, H_3) внешним по отношению к объемам (V_3, V_7) , см. рисунок 4.1.
- 4 Помехи I_1 , U_1 , наводимые ЭМИМ во внешних кабельных и проводных линиях связи (см. рисунок 4.1) напрямую воздействуют на аппаратуру в объемах второго и третьего уровней экранирования (объемы V_3 , V_7), и должны быть ограничены на вводе защитными устройствами (УЗВ).
- 4.2.2 На границах зон должно осуществляться экранирование и соединение с экраном всех пересекающих границу металлических элементов и коммуникаций, а ввод кабелей электроснабжения, связи и управления должен осуществляться через устройства защиты вводов или посредством волоконно-оптических кабелей.

Зона V_0 - объем, включающий внешнее электромагнитное воздействие I_m , E_0 , H_0 ; зона V_1 - объем, заключенный внутри общего электромагнитного экрана СФС с общей поверхностью S_1 ; зоны V_2 - V_{11} - другие экранированные объемы внутри общего экрана, ограниченные поверхностями S_2 - S_{11} ; S_1 - внешний электромагнитный экран; S_2 - S_3 - местные экраны помещения (группы помещений); S_6 - экраны встроенных объемных конструкций (ВОК); S_7 - экраны (корпуса) арматуры; S_8 - S_{11} - экраны кабелей; S_{12} - экран распределительного устройства системы электроснабжения

Рисунок 4.1 – Зоны защиты (экраны) во внутренних объемах сооружений

4.2.3 Технические средства должны размещаться в зонах, обеспечивающих требуемый уровень электромагнитной обстановки в соответствии с ГОСТ 51317.2.5-2000.

П р и м е ч а н и е – Каждая зона (экранирующая поверхность) имеет один или более путей проникновения электромагнитной энергии. Электромагнитное поле диффундирует через материал экранирующих оболочек, проникает через необходимые для функционирования объекта входы, окна, вентиляционные отверстия, вводы пластиковых труб, панели из непроводящих (диэлектрических) материалов, а также через сигнальные, информационные и силовые кабели. Наличие функционально необходимых неоднородностей делает экран не идеальным, и приводит к ухудшению внутренней электромагнитной обстановки. Чем лучше спроектирован экран сооружения, тем меньше точек ввода в него электромагнитной энергии, тем эффективнее защита от вторичных проявлений разрядов молнии.

4.2.4 Все металлические элементы объекта, корпуса ТС должны быть электрически связаны между собой и соединены с защитным заземлением, как это показано на рисунке 4.1.

Экранирование

- 4.2.5 Электромагнитное экранирование должно осуществляться металлическими конструкциями и арматурными каркасами железобетонных сооружений.
- 4.2.6 Выбор мер защиты от внешних ЭМИМ и токов молнии следует проводить в зависимости от функционального назначения сооружения, вида устанавливаемой аппаратуры, ее стойкости к ЭМИМ, компоновки оборудования в сооружениях и результатов технико-экономического анализа.

Примеры схемно-конструктивного решения электромагнитных экранов, используемых для защиты высокочувствительного оборудования, приведены на рисунках 4.2 и 4.3.

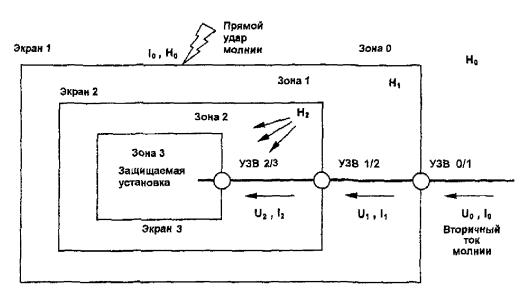
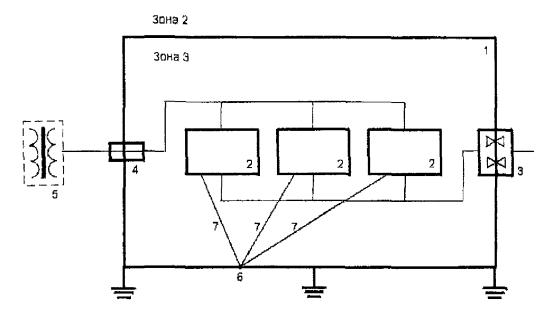



Рисунок 4.2 - Электромагнитная обстановка в экранированных объемах при прямом ударе молнии

- 4.2.7 Защита от электромагнитных полей и токов молнии должна выполняться по одному из следующих вариантов:
- общее экранирование всего сооружения или экранирование части сооружения (отдельного помещения или группы помещений);
- местное экранирование;
- сочетание общего и местного экранирования.

- 1 металлический экран помещения; 2 ТС особо ответственных систем;
 - 3 волоконно-оптические линии связи; 4 устройство защиты ввода;
 - 5 изолирующий трансформатор для электроснабжения ТС;
- 6 -- одноточечное заземление аппаратуры ТС; 7 -- заземляющие проводники

Рисунок 4.3 - Ввод коммуникации и заземление аппаратуры ТС в помещении с металлическим экраном

4.2.8 Местное экранирование необходимо применять для защиты аппаратуры высокой чувствительности к ЭМИМ.

Примечание - Местное экранирование применяется в случае:

- отсутствия общего электромагнитного экрана;
- недостаточной эффективности общего электромагнитного экрана зданий и сооружений;
- если ожидаемые вторичные электромагнитные поля, создаваемые наведенными токами в ограждающих металлоконструкциях зданий и сооружений, недопустимо велики (прямой удар молнии в металлоконструкции зданий и сооружений).
- 4.2.9 Для обеспечения максимальной эффективности защиты от вторичных проявлений разряда молнии следует применять экраны из листового металла.

П р и м е ч а н и е – При правильной организации вводов и входов в экранированные объемы из листового металла, они обеспечивают ослабление внещних электромагнитных помех на уровне 100 дБ.

Общее экранирование

4.2.10 Общие электромагнитные экраны должны выполняться в виде замкнутых по контуру ограждающих металлоконструкций зданий и сооружений.

Примечания

- 1 Электромагнитные экраны образуются:
- совокупностью металлических элементов, являющихся составной частью ограждающих металлоконструкций (пистовая арматура армометаллоблоков, облицовка из металличе-

- ских листов, арматурные сетки, чугунные тюбинги и т.п.);
- наружной или внутренней поверхностями покрытий ограждающих конструкций другого функционального назначения (например, гидроизоляционных покрытий из фольгоизола);
- специальными экранами, устраиваемыми по наружной или внутренней поверхностям ограждающих конструкций (облицовка из листового металла, покрытия из тканых металлических сеток, напыленные металлизованные покрытия и т.п.).
- 2 В состав экрана входят защитные устройства дверных проемов, отверстий, вводов коммуникаций и газовоздушных трактов (металлические полотна и обрамление дверей и люков, сотовые решетки, электрические волноводы и др.).
- 4.2.11 Электромагнитные экраны зданий и сооружений следует выполнять из листового металла или арматурной сетки. Экраны выполняются одним слоем (однослойные экраны) или из нескольких слоев (многослойные экраны). Сочетание разных по структуре материалов электромагнитных экранов образует комбинированные экраны.

Примечания

1 Сплошные электромагнитные экраны выполняются в виде:

- сварных облицовок из листовой прокатной стали, армометаллоблоков, тонкой листовой стали, листов оцинкованной кровельной стали с фальцевым соединением;
- металлизированных покрытий (алюминиевых, медных, цинковых, ферромагнитных, нанесенных методом напыления на поверхности железобетонных ограждающих конструкций);
- сборных конструкций из оцинкованного профилированного настила или трехслойных панелей на основе профилированного настила;
- из одного или нескольких слоев гидроизоляционного фольгоизола.
- 2 Сетчатые экраны зданий и сооружений выполняются в виде:
- одно или многослойных арматурных сеток ограждающих конструкций;
- тканых проволочных сеток промышленного изготовления, укладываемых в защитные стяжки.
- 3 Комбинированные экраны образуются различными сочетаниями листового металла и арматурной сетки.
- 4.2.12 При разработке и конструировании сплошных металлических экранов должно быть обеспечено качество соединения отдельных элементов между собой и наличие защитных устройств в технологических неоднородностях экранов зданий и сооружений.

Примечания

- 1 Соединения элементов экрана из листовой стали должны выполняться сплошным сварным швом или пайкой, что обеспечивает высокую эффективность экранирования электромагнитного поля.
- 2 Экраны из тонколистовых материалов обеспечивают эффективность экранирования электромагнитного поля при соединении их внахлест непрерывным швом.
- 3 Точечные соединения сваркой (прерывистым швом) или болтовые соединения внахлест требуют соблюдения технологии при их использовании. При несоблюдении технологии образуются щели, которые снижают эффективность экрана.

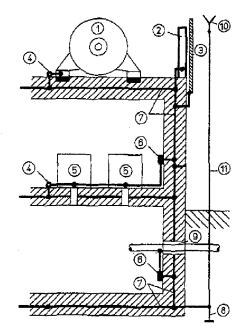
Местное экранирование

- 4.2.13 Местное экранирование применяется в случаях, указанных в п.4.2.9. Оно выполняется в виде экрана для одного или группы помещений, а также в виде кабин (корпусов) для аппаратуры и оборудования, подлежащих дополнительной защите от ЭМП.
- 4.2.14 Местное экранирование следует выполнять с учетом общих требований, предъявляемых к электромагнитным экранам.

П р и м е ч а н и е - За расчетное воздействие принимаются амплитудно-временные параметры ЭМИМ, создаваемых током молнии, внутри общего экрана с учетом влияния конструктивных неоднородностей.

- 4.2.15 Для наземных зданий рекомендуется применять следующие виды местных экранов:
- сплошные из листовой стали или из листов оцинкованной кровельной стали с фальцевым соединением;
- сплошные металлизованные покрытия, напыленные на бетонную поверхность, или в виде штукатурки по внутренней поверхности экрана из проводящих шунгитовых материалов;
- сплошные фольгированные (из фольгоизола или из рулонной фольги для технических нужд);
- сплошные из металлизированных тканей;
- сетчатые из тканых сеток промышленного изготовления с толщиной проволоки от 0,7 до 1,2мм и размером ячеек от 6х6 до 12х12мм;
- мелкоячеистые сетчатые из арматуры диаметром 5-8мм с шагом ячейки от 30 до 60мм.

Примечание - Защитная способность местных экранов из тонколистового металла и металлизированных покрытий, приведена в таблице 4.1.
Таблица 4.1


Тип экрана по материалу	Минимальная толщина (мм), при которой обеспечивается коэффициент экранирования по Е – полю		
	30 дБ	От 30до 100 дБ	
Фольга алюминиевая, для технических нужд	0,03	0,95	
Фольгоизол марок ФК и ФГ	0,02	0,7	
Сталь листовая горячекатанная, стальная фольга	0,03	0,15	
Покрытие металлизированное, напыленное на бетонную поверхность	0,04	0,55	

4.3 Система уравнивания потенциалов

4.3.1 Система уравнивания потенциалов должна обеспечивать равенство потенциалов всех доступных прикосновению проводящих элементов конструкции здания и металлических корпусов оборудования.

Примечания

- 1 Системой уравнивания потенциалов должны быть охвачены основные проводящие элементы каркаса здания: колонны, балки, фундаменты, а также металлические проводящие части, доступные прикосновению внутри помещений, например, корпуса оборудования, металлические дверные и оконные блоки, и др., которые должны быть присоединены к шине защитного заземления, рисунок 4.4.
- 2 IEC 62305 рекомендует трехмерную систему заземления в промышленных зданиях, состоящую из связанной сети, соединенной с системой заземления (рисунок 4.5).
- 3 Сварные и болтовые соединения металлического каркаса являются достаточными для обеспечения надежности электрического контакта. Связи по арматуре железобетонного каркаса должны предусматриваться при их проектировании. Между собой должно быть соединено не менее 50% строительных элементов каркаса здания.
- 4 Достаточность естественных контактных соединений в сочленениях элементов каркаса здания зависит от их конструктивного исполнения. Сварные, болтовые и т.п. соединения метаплического каркаса являются достаточными для обеспечения надежности электрического контакта.

- 1 -силовое электрооборудование; 2 -стальная решетка; 3 -металлическое покрытие фасада;
 - 4 -места соединения; 5 -электрическое или электронное оборудование;
 - 6 соединительная шина; 7 стальная арматура; 8 электрод заземления;
 - 9 ввод коммуникаций; 10 молниеприемник; 11 спуск молниеприемника

Рисунок 4.4 - Эквипотенциальное соединение в конструкциях со стальной арматурой

4.3.2 В качестве естественных элементов токоотводов следует использовать все металлические конструкции зданий и сооружений. В качестве заземляющих электродов

следует использовать железобетонные фундаменты зданий и другие подземные металлические конструкции.

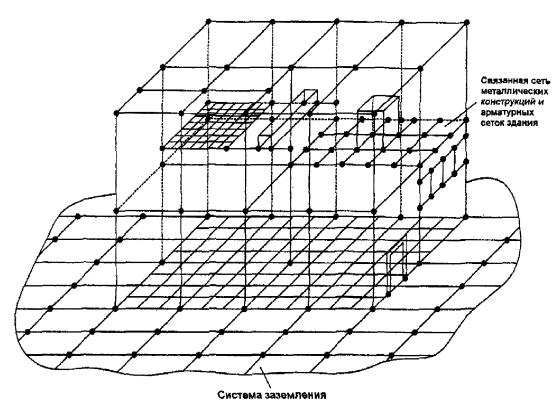


Рисунок 4.5 - Пример трехмерной системы заземления состоящей из связанной сети, соединенной с системой заземления

4.3.3 Равномерное стекание токов молнии обеспечивается большим количеством токоспусков, равномерно распределенных по периметру здания, и их подключением к выравнивающему контуру заземления или металлическому каркасу здания.

П р и м е ч а н и е - При установке молниеприемных устройств (как стержневых, так и молниеприемной сетки) на здании помехозащищенность и электробезопасность достигается за счет равномерного распределения токов молнии по периметру здания.

- 4.3.4 Необходимо использовать общее заземляющее устройство для защитного и функционального заземления и присоединения нулевого защитного проводника к основной системе уравнивания потенциалов по требованиям ГОСТ Р 50571.
- 4.3.5 Общее заземляющее устройство следует использовать в качестве рабочего заземления. К основной системе уравнивания потенциалов должен быть присоединен и заземляющий проводник функционального (рабочего) заземления.

4.4 Заземление

4.4.1 Величина сопротивления заземления для обеспечения защиты объектов различной категории от ПУМ определяется требованиями п.п.2.1.2.2; 2.1.3.3 и 2.1.4.6, а для обеспечения электробезопасности требованиями ПУЭ.

Примечание - Заземление ТС и их систем обеспечивает:

- защиту от перенапряжений, возникающих на корпусах-экранах ТС и каркасах зданий и сооружений при их поражении молнией;
- уменьщение уровней наведенных напряжений и токов во внутренних и внешних цепях управления TC при различного рода электромагнитных воздействиях (повышение помехозащищенности TC).
- 4.4.2 Заземление грозозащиты и защитные заземления должны иметь потенциал Земли. Для системы рабочих заземлений это условие не является обязательным.

Примечание - Виды заземлений:

- заземление грозозащиты (для отвода тока молнии в землю от молниезащитной сетки, стержневых и тросовых молниеотводов или других конструкций, в которые произошел или может произойти удар молнии);
- защитное заземление (для обеспечения безопасности обслуживающего персонала путем заземления металлических частей установок, которые нормально имеют нулевой потенциал, но могут оказаться под напряжением при перекрытии или пробое изоляции);
- рабочее (функциональное) заземление (для создания опорного эквипотенциального уровня схем и систем TC, обеспечивающее режим нормального функционирования TC).
- 4.4.3 Один и тот же заземлитель должен выполнять два или три назначения одновременно.

Примечания

- 1 ПУЭ рекомендует присоединение заземлителя молниезащиты к основной системе уравнивания потенциалов выполнять проводниками не от токоотводов, а от заземлителя непосредственно, или от двух разных фундаментных болтов, или двух разных закладных частей фундамента при использовании фундамента в качестве естественного заземлителя.
- 2 Выполнение функционального заземления, не связанного с заземляющим устройством защитного заземления и основной системой уравнивания потенциалов здания, следует рассматривать как <u>специальный случай</u>, в котором должны быть приняты меры защиты людей от поражения электрическим током, исключающие возможность одновременного прикосновения к частям, присоединенным к системе уравнивания потенциалов электроустановки здания и к частям технологического оборудования, присоединенным к независимому заземляющему устройству функционального заземления.

Защитное заземление

4.4.4 Корпуса-экраны ТС должны быть надежно заземлены.

Примечание е- Это исключает появление на этих корпусах-экранах высоких потенциалов, опасных для обслуживающего персонала, которые могут возникнуть при поражении молнией здания или пробое изоляции в цепях питания ТС от электрических сетей общего пользования.

- 4.4.5 Заземление корпусов-экранов ТС должно выполняться проводниками с переходным сопротивлением на землю не более 0,5 Ом к контурам заземления зданий или индивидуальным выносным заземлителям. Помимо корпусов-экранов ТС, должны в обязательном порядке заземляться нулевой и заземляющий провод системы электропитания ТС в точке их ввода в оборудование.
- 4.4.6 Для обеспечения безопасной эксплуатации ТС при разрядах молнии необходимо, чтобы сопротивление заземления металлических конструкций зданий и сооружений в месте размещения ТС было меньше сопротивления заземления цепей электропитания этих средств. В противном случае, ток молнии будет воздействовать на ТС по системе защитного заземления.

П р и м е ч а н и е - При совмещении функций заземления молниезащиты и рабочего заземления, токи молнии замыкаются на общий с рабочим заземлением заземлитель (имеет место равенство сопротивлений и ток молнии может протекать по защитному заземлителю). Поэтому следует организовать стекание тока молнии таким образом, чтобы он не протекал по внутренним металлоконструкциям здания и магистралям заземления. Внешней электромагнитный экран или молниезащитная сетка с системой токоспусков должны быть выполнены таким образом, чтобы ток молнии замыкается на выравнивающий контур заземления в обход внутренних металлоконструкций и магистралей заземления. Это обеспечит возможность использования общего заземлителя для разных целей.

4.4.7 Необходимо обеспечить равенство сопротивлений между двумя соседними точками системы заземления, так как блуждающие токи могут создать значительные падения напряжения между ними и стать дополнительными источниками мощных электромагнитных помех для цепей ТС

Примечания

- 1 Для этой цели требуется обеспечить надежную систему уравнивания потенциалов, между двумя соседними точками системы заземления.
- 2 Разработка системы рационального рабочего заземления подсистем, схем и цепей ТС преследует две основные цели. Первая заключается в том, чтобы снизить помеховые напряжения, возникающие в цепях ТС при протекании токов через общие сопротивления земли. Вторая связана с необходимостью исключения образования замкнутых контуров заземления, чувствительных к помеховым магнитным полям и разностям потенциалов земли. Это является обязательным для отдельных подсистем и блоков ТС, а также для кабельных межблочных линий связи, объединяющим отдельные узлы и блоки ТС в единую функциональную систему.

Рациональное рабочее (функциональное) заземление

4.4.8 Современные электронные системы ТС заземляют в одной или нескольких точках, образуя одноточечные, многоточечные или гибридные схемы заземления (рисунок 4.6).

Примечание - Многоточечное заземление дает лучшие результаты на высоких частотах, а одноточечное заземление - на низких. Сочетание одно- и многоточечного заземления

(гибридное заземление) является лучшим решением при выполнении заземлений в широко-полосных схемах.

Последовательная одноточечная	Ввиду своей простоты является наиболее применяемой для некритичных к соблюдению основных требований ЭМС схем и подсистем. Не следует применять в цепях с большим разбросом потребляемой мощности, так как мощные каскады создают большие возвратные токи, оказывающие дестабилизирующее влияние на слаботочное оборудование. При использовании данной схемы заземления наиболее критичное к влиянию помех оборудование следует подключать как можно ближе к точке первичного заземления.
Параллельная одноточечная 1 2 3	В связи с отсутствием перекрестных связей между возвратными токами различных схем наиболее предпочтительно применять схему заземления на низких, вплоть до 1 МГц частотах. Схема громоздка из-за непомерно большого количества проводов заземления. Однако для отдельно взятого помещения она является оптимальной.
Гибридная	Обладает свойствами одноточечной и многоточечной схем за- земления. Применяется в основном для заземления широкополос- ных схем.

Рисунок 4.6 - Виды рабочего заземления оборудования ТС

Особенности защиты хранилищ и цехов по переработке боеприпасов от вторичных проявлений молнии

- 4.4.9 Для исключения возможности появления искрения внутри хранилищ и цехов (лабораторий) вследствие электромагнитной и электростатической индукции грозовых разрядов необходимо заземлить все протяженные металлические конструкции сооружения, все внутренние коммуникации и все металлические корпуса оборудования и
 аппаратуры (например, металлическую кровлю здания, фермы, балки, каркасы, краны,
 подкрановые пути, трубопроводы, станки, машины, аппараты, корпуса электрических
 машин и т. п.).
- 4.4.10 В зданиях и сооружениях из сборных железобетонных конструкций с металлическими закладными деталями, к которым приварена стальная арматура, закладные детали следует заземлить. Для этой цели должен быть устроен специальный защитный заземлитель, который может быть выполнен в виде замкнутого контура, охватывающего все защищаемое здание.

П р и м е ч а н и е - При выполнении защитного заземлителя в виде замкнутого контура вокруг здания величина сопротивления заземления для объектов I категории определяется по требованиям п.2.1,2.2... Соединенные между собой заземляющие устройства отдельно стоящих молниеотводов и подземные металлические конструкции зданий и сооружений должны иметь суммарное сопротивление, определяемое требованиями п.2.1.2.2.

- 4.4.11 Для железобетонных сооружений в качестве заземлителя защиты от вторичных проявлений молнии следует использовать арматурную сетку бетонной подготовки под фундаментную плиту, а для подземных сооружений с двойной металлоизоляцией собственно внутреннюю металлоизоляцию ограждающих конструкций. Эти заземлители следует использовать и для устройства защитного заземления электроустановок, размещаемых во внутренних объемах сооружений. Во всех случаях заземление защиты от вторичных воздействий молнии и система защитного заземления электроустановок должны быть объединены.
- 4.4.12 Подлежащее заземлению оборудование должно быть присоединено к заземлителю кратчайшим путем. Для этой цели может быть устроен надземный контур, расположенный внутри или снаружи здания по его стенам. Этот контур, является сборной заземляющей шиной и должен быть присоединен к заземлителю через каждые 4-12м (см. раздел 3). Металлическая кровля здания заземляется через каждые 8-24м. Надземные заземляющие проводники должны быть выполнены из стали сечением не меньше 16мм². Заземлитель защиты от вторичных проявлений молнии должен иметь защиту от помех по цепям заземления, через которые протекают токи молнии.

5 Защита вводимых в сооружения инженерных коммуникаций и подключенных к ним технических средств

- 5.1 Защите от разрядов молнии подлежат следующие виды инженерных коммуникаций (далее по тексту коммуникации):
- линии систем электроснабжения, управления, автоматики;
- металлические трубопроводы систем топлива, водоснабжения и водоотведения, газовоздушные тракты.
- 5.2 Защита коммуникаций и подключенных к ним технических средств СФС должна осуществляться в соответствии с требованиями ВСП 45-02-98/МО РФ.
- 5.3 Молниевые или специальные аппаратные средства защиты от вторичных проявлений молнии должны устанавливаться на вводах в сооружения, на сборных шинах распределительных устройств и щитов, а при необходимости и на вводах технических

средств СЭС. Класс напряжения аппаратных средств защиты должен соответствовать классу изоляции линий электропередачи и подключенных к ним технических средств.

- 5.4 Если по условиям функционирования СЭС должна иметь защиту как от ЭМИ, так и от молнии, то в качестве средств защиты должны применяться специальные аппаратные средства защиты от ЭМИ, технические характеристики которых приводятся в [9].
- 5.5 Средства защиты СЭС должны обеспечивать снижение воздействующих на нее электромагнитных полей, токов и напряжений до уровня, соответствующего стой-кости наиболее слабого элемента или технического средства системы.

П р и м е ч а н и е - Если основная часть СЭС имеет высокий уровень стойкости и лишь небольшая часть - низкую, то уровень снижения следует считать по первой группе, а для второй группы следует предусматривать дополнительную ступень (ступени) защиты с уровнем снижения до величины, соответствующей ее стойкости.

- 5.6 Методика выбора и проверки эффективности защиты СЭС от воздействия молнии состоит в следующем [9]:
- по классам напряжений СЭС выбираются необходимые типы защитных устройств;
- по результатам расчетных оценок воздействия молнии на коммуникации СЭС (воздушные и кабельные линии) определяются максимальные значения крутизны фронтов импульсов наведенных в них напряжений:

$$S = U/\tau_{\phi} \,, \tag{5.1}$$

где U - амплитуда импульса напряжения, наведенного в коммуникации, кВ;

 τ_{ϕ} - длительность фронта импульса напряжения, мкс;

— по вольт-секундным характеристикам выбранных защитных устройств определяются величины динамических напряжений срабатывания (для искровых разрядников) или остающихся напряжений (для нелинейных ограничителей перенапряжений), как точки пересечения вольт-секундных характеристик защитных устройств с прямыми, проходящими через начало координат под углом $\alpha = arctg\ S$ (углы α определяются в прямоугольной системе координат, выполненной в логарифмическом масштабе). В том случае, когда вольт-секундные характеристики защитных устройств неизвестны, в качестве параметров динамических напряжений срабатывания принимаются значения импульсных пробивных напряжений искровых промежутков (для разрядников) при соответствующих предразрядных временах или значения остающихся на-

пряжений (для нелинейных ограничителей перенапряжений), приведенные в технических условиях или в справочной литературе;

проверка выбранных защитных устройств на быстродействие производится по условию:

$$U_{\dot{\alpha}} \le 0.77 U_{\dot{\alpha}on},\tag{5.2}$$

где U_{δ} - динамическое напряжение срабатывания (остающееся напряжение) защитных устройств, кВ;

 $U_{\partial on}$ - допустимое значение напряжения (параметрический показатель стойкости для технических средств), кВ;

0,77 - коэффициент, учитывающий 23%-ное значение координационного интервала между вольт-секундной характеристикой защитных устройств и защищаемых технических средств.

Если выбранные защитные устройства не удовлетворяют данному условию, необходимо либо выбрать другие типы защитных устройств с лучшими динамическими характеристиками, либо принять меры по уменьщению крутизны фронтов импульсов напряжений, наводимых в коммуникациях, путем разработки дополнительных мероприятий.

Если защитные устройства удовлетворяют данному условию, то они проверяются по критерию пропускной способности из условия:

$$I_{pac4} \le I_{don} \tag{5.3}$$

где $I_{\partial on}$ - допустимые значения токов через защитные устройства при заданных временных параметрах, к**A**;

 I_{pacy} расчетные значения токов через защитные устройства, кА.

Величина допустимого значения тока на нелинейных элементах защитного устройства определяется из соотношения:

$$I = \left(\frac{N_H}{N}\right)^{1/\tau} I_H \left(\frac{\tau_H}{\tau}\right)^m \tag{5.4}$$

где N_{H} - количество нормируемых импульсов;

 I_{H^-} амплитуда нормируемого импульса тока, А;

 τ_{n} длительность нормируемого импульса тока до уровня 0,5 от амплитуды, мс;

N- расчетное (задаваемое) количество воздействующих импульсов (требуемая

кратность срабатывания защитного устройства);

- т длительность расчетного импульса на уровне 0,5 от амплитуды, мс;
- ту- коэффициенты, характеризующие свойства материала нелинейного резистора.

Примечания

- 1 Величины N_{H} , I_{H} τ_{H} характеризуют пропускную способность защитного устройства и должны определяться по данным, приведенным в технических условиях на защитные устройства или в справочной литературе.
- 2 Для искровых разрядников в качестве параметров допустимых токов I_{don} принимаются величины максимальных импульсных токов для определенных длительностей импульсов и количества выдерживаемых воздействий.
- 3 Если выбранные защитные устройства не удовлетворяют требованиям по пропускной способности, то необходима разработка дополнительных мероприятий, направленных на снижение наведенных молнией токов и напряжений с последующей проверкой.
- 5.7 Защита систем управления и автоматики (САУ) объектов военной инфраструктуры от токов и напряжений молнии обеспечивается путем:
- шунтирования входных цепей технических средств;
- отключения входных цепей технических средств от магистральных или межблочных линий;
- комбинированием перечисленных способов.

Примечания

- 1 Шунтирование входных цепей технических средств обеспечивается ограничением поступающих импульсов тока и напряжения на уровне полезного сигнала с помощью полупроводниковых ограничителей перенапряжений, стабилитронов, диодов, варисторов и др. и глубоким ограничением с помощью разрядников.
- 2 Отключение входных цепей технических средств обеспечивается частичным увеличением их входных сопротивлений с помощью дефензоров и их полным отключением с помощью специальных предохранителей.
- 3 Комбинированный способ защиты входных цепей обеспечивается совместным применением разрядников и дефензоров с полупроводниковыми ограничителями перенапряжения.
- 5.8 Защита внешних коммуникаций САУ от поражающего действия молнии реализуется с помощью аппаратных средств защиты и проведения дополнительных мероприятий, направленных на снижение токов и напряжений в коммуникациях.

Примечания

1 В качестве аппаратных средств защиты должны применяться газонаполненные разрядники и нелинейные ограничители перенапряжений, которые устанавливаются в соединительных муфтах и на входах кабельных коммуникаций в сооружения. Оптимальное расстояние между местами установки разрядников или ограничителей перенапряжений по длине кабельной комму-

никации
$$\ell$$
 (м), определяется по формуле $\ell \le \left(U_{ox} - U_{op}\right) \left(\frac{\ell_{max}}{1,25U} + \frac{V}{2S}\right)$,

где $U_{\partial \kappa}$ и $U_{\partial p}$ - динамические напряжения пробоя изоляции кабеля и искровых промежутков разрядника (остающееся напряжение ограничителя перенапряжений), кВ;

- V скорость распространения волны напряжения по кабельной линии, м/с;
- S крутизна импульса наведенного напряжения, кВ/с;
- U_{\max} максимальное значение наведенного напряжения в кабеле на расстоянии ℓ_{\max} от начала (конца) кабеля, кВ.
- 2 В качестве дополнительных мероприятий, обеспечивающих снижение токов и напряжений, наводимых молнией в коммуникациях САУ, применяется параллельная прокладка коммуникаций и защитных тросов, дополнительное экранирование коммуникаций, устройство специальных заземлений вдоль трасс коммуникаций, применение оптоволоконных и оптронных развязок и другие мероприятия.
- 5.9 Защита САУ, расположенных внутри сооружений, выполняется, как правило, одно или многоступенчатой.

Примечания

1 Первая ступень предназначается для защиты от импульсных перенапряжений, возникающих между жилами и экранами кабелей, и устанавливается на линейных вводах кабелей в сооружение.

Вторая ступень предназначается для защиты от импульсных перенапряжений, возникающих между жилами кабелей, и устанавливается как на линейных вводах в сооружения, так и на станционной стороне вводов в аппаратуру или технические средства.

Третья ступень предназначается для защиты чувствительных и ответственных блоков и узлов и размещается, как правило, непосредственно у аппаратуры или на входах отдельных блоков. Все три ступени защиты должны располагаться в отдельных шкафах и стойках.

- 2 В качестве защитных устройств в ступенях защит используются газонаполненные разрядники, нелинейные ограничители перенапряжений, варисторы, диоды, дефензоры, стабилитроны и др. Технические характеристики аппаратных средств защиты САУ приводятся в [9]. Варианты многоступенчатых схем защит САУ от молнии и других мощных электромагнитных полей естественного и искусственного происхождения приводятся в [9] и справочной литературе.
- 5.10 Расчетная оценка амплитудно-временных параметров токов и напряжений, наводимых молнией в воздушных и кабельных линиях САУ, должны производиться по специальным методикам и научно-исследовательским программам [9].
- 5.11 Выбор аппаратных средств защиты для САУ производится исходя из следующих требований:
- технические характеристики и параметры защитных устройств не должны влиять на характеристики функциональных блоков и устройств, в которых они используются;
- уровни динамических и остающихся напряжений на защитных устройствах не должны превышать уровни допустимых напряжений для защищаемых блоков и устройств;
- надежность защитных устройств должна быть выше надежности защищаемых блоков и устройств;
- быстродействие защитных устройств должно быть максимально возможным;

- допустимые значения токов в защитных устройствах должны быть больше или соизмеримы с величинами реальных (расчетных) токов, поступающих на защитные устройства при воздействиях молнии;
- динамические сопротивления защитных устройств в проводящем состоянии должны быть минимально возможными;
- для высокочастотных цепей межэлектродные емкости и индуктивности защитных устройств должны быть минимальными.

П р и м е ч а н и е - Уровни основных электрических параметров, необходимые для выбора аппаратных средств защиты САУ от токов и напряжений молнии, приводятся в таблице 5.1. Т а б л и ц а 5.1

Основные электрические	Тип аппаратных средств защиты			
параметры	разрядники	ограничители перенапряжений	варисторы	
Диалазон рабочих напряжений, В	7010000	2,5200	302000	
Диапазон импульсных токов, А	50020000	101000	1005000	
Диапазон межэлектродных емкостей, пФ	215	10010000	30020000	
Диапазон времени срабатывания, с	0,4 10 6-0,15 10 6	10 ⁻¹¹ 10 ⁻⁹	10-90,710-8	

5.12 Защита металлических трубопроводов и связанного с ними оборудования от воздействия токов и напряжений молнии должна обеспечиваться комплексом мероприятий, направленных на исключение прямых попаданий молнии в трубопроводы, содержащие горючие и взрывоопасные материалы, или уменьшение величин токов и напряжений до допустимого уровня в трубопроводах, не содержащих указанных материалов.

П р и м е ч а н и е - В качестве таких мероприятий рекомендуется применение стержневых и тросовых молниеотводов, устройство специальных заземлений, применение диэлектрических вставок и др.

6 Порядок разработки документации и приемки в эксплуатацию молниезащитной системы

6.1 Объем и содержание технической и эксплуатационной документации

В воинских частях, организациях и предприятиях Министерства обороны, где предусмотрено устройство МЗС, должен быть разработан комплект эксплуатационно-технической документации.

В комплект эксплуатационно-технической документации должны входить:

- проект молниезащитной системы объекта;
- документы приемки в эксплуатацию M3C;

- документы по эксплуатации и техническому обслуживанию.

6.2 Порядок приемки в эксплуатацию устройств молниезащиты

- 6.2.1 Молниезащитная система объекта законченного строительства (реконструкции, расширения) должна приниматься рабочей комиссией, и передаваться в эксплуатацию воинской части до начала монтажа технологического оборудования, завоза и размещения в зданиях и сооружениях боеприпасов, изделий, вооружения и ценного имущества.
- 6.2.2 Приемка молниезащитной системы на действующих объектах осуществляется актом рабочей комиссии. Состав рабочей комиссии определяется приказом командира воинской части. В состав рабочей комиссии должны входить:
- председатель комиссии главный инженер (заместитель командира по технической части).
- члены комиссии ответственный за молниезащиту (начальник подразделения, на территории которого находится МЗС), представитель КЭЧ (КЭУ, ОМИС), представители службы ППЗ и СР, представители подрядной организации.
- 6.2.3 Рабочей комиссии предъявляется утвержденный проект устройства молниезащитной системы объекта.
- 6.2.4 Рабочая комиссия производит проверку и осмотр выполненных строительно-монтажных работ по установке молниеотводов; устройству заземления молниеотводов, соответствия параметров аппаратных средств защиты от вторичных проявлений молнии требованиям ТЗ; проверяет наличие плакатов и схем размещения молниеотводов на объекте в соответствии с требованиями п.6.2.5 и п.7.1.7.
- 6.2.5 На каждом молниеотводе должен быть установлен плакат с указанием его порядкового номера, года установки и предупреждающей надписью об опасности нахождения вблизи молниеотвода во время грозы.

Нумерацию молниеотводов для каждого объекта ведут отдельно (начиная с первого номера) и проставляют в левом верхнем углу трафарета в виде двойного числа, где первое число обозначает номер объекта по генеральному плану, а второе (через дефис) — порядковый номер молниеотвода. В правом верхнем углу указывается год установки молниеотвода (рисунок Д.4.1 приложения Д.4).

На видном месте стен, защищаемых объектов (для открытых площадок - на первом молниеотводе каждой площадки) должны быть изображены условные знаки или прикреплены плакаты с этими знаками, показывающими взаимное расположение фундаментов зданий и сооружений, опор молниеотводов, токоотводов и заземлителей (рисунок Д.4.2 приложения Д.4).

- 6.2.6 Приемка и ввод в эксплуатацию молниезащитной системы законченного строительства (реконструкции) оформляется актом приемки в эксплуатацию МЗС, возводимой по титулу капитального строительства в соответствии с приложением Д.3.1.
- 6.2.7 После приемки в эксплуатацию молниезащитной системы объекта составляется паспорт молниезащитной системы в соответствии с приложением Д.3.4 и паспорт заземлителей молниезащиты в соответствии с приложением Д.3.5, которые хранятся у начальника подразделения, в чьем ведении находятся защищаемые сооружения.

Примечания

7 Контроль состояния молниезащитной системы

7.1 Эксплуатация молниезащитных систем объектов

- 7.1.1 Молниезащитные системы специальных объектов, в том числе баз и складов ракет и боеприпасов, эксплуатируются в соответствии с требованиями настоящего документа, а во всех неоговоренных случаях в соответствии с Правилами технической эксплуатации электроустановок потребителей и Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок (ПОТ РМ 016-2001), а также нормативными документами, приказами, директивами Министра обороны РФ и его заместителей.
- 7.1.2 Надзор за соблюдением Норм и Правил по устройству и эксплуатации молниезащитных систем на объектах общевойскового и коммунально-бытового назначения (казармы, штабы, клубы, водонапорные башни, дымовые трубы котельных, вышки пожарных депо, хранилища с вещевым, медицинским, продовольственным и техническим имуществом и т. д.), возлагается на квартирно-эксплуатационные органы Министерства обороны согласно требованиям приказов Министра обороны СССР 1977г. №75 и начальника Службы Расквартирования и обустройства МО СССР 1978г. №16. Надзор за соблюдением Норм и Правил по устройству и эксплуатации молниезащитных систем, отдельных зданий и сооружений, не предусмотренных вышеприведенными приказами,

¹ В техническом отделе воинской части оформляется журнал учета состояния модниезащитной системы в соответствии с приложением Д.3.7.

² Перечисленные документы являются эксплуатационной документацией МЗС объекта.

возлагается (по подчиненности) на соответствующие главные и центральные управления Министерства обороны, видов Вооруженных Сил и родов войск.

- 7.1.3 Необходимо следить за тем, чтобы открытые металлические конструкции молниеотводов имели антикоррозионные покрытия красками, битумным лаком и т.п. Допускается защищать токоотводы антикоррозионными покрытиями только в наземной части и под поверхностью земли не более 0,5м.
- 7.1.4 Производить земляные работы у защищаемых зданий и сооружений, оборудованных устройствами молниезащиты, а также вблизи них допускается только с разрешения эксплуатирующей организации, которая обязана выделить наблюдающих за сохранностью устройств молниезащиты.
- 7.1.5 При проведении работ вблизи молниеотводов и их заземлителей производителю работ должно быть указано точное расположение элементов устройств молниезащиты (заземляющих электродов, токоотводов и т.п.) и порядок производства работ.

Особое внимание следует обращать на раскопки, производимые механизированным способом. В зависимости от способа производства работ и применяемых средств механизации необходимо принимать меры по защите устройств молниезащиты от механических повреждений.

- 7.1.6 Категорически запрещается во время грозы производить все виды работ с устройствами молниезащиты и вблизи них.
- 7.1.7 На участках дорог (автомобильных и железнодорожных) и пешеходных дорожек, находящихся ближе 15 метров от молниеотводов и их заземлителей, устанавливаются плакаты с предупреждающими надписями об опасности пребывания людей в этих местах во время грозы в соответствии с приложением Д.4 и предусматриваются обходные пути.
- 7.1.8 Приказом командира части об организации эксплуатации молниезащитной системы назначаются подразделения и ответственные лица за эксплуатацию и техническое обслуживание объекта:
- за разработку проектов МЗС, контроль при монтаже соответствия МЗС проектной документации – начальник производственно-технического отдела;
- за оборудование, эксплуатацию и поддержание в технически исправном состоянии
 МЗС начальники подразделений, на территории которых находятся здания и сооружения;

- за изготовление, надзор и ремонт молниеотводов начальник энергомеханического отдела;
- за установку молниезащитных устройств начальник отдела инженерных работ.
- 7.1.9 Ответственность за сохранность и поддержание в технически исправном состоянии молниеотводов в процессе их эксплуатации несут начальники подразделений, на территории которых находится МЗС.
 - 7.1.10 В обязанности лица, ответственного за эксплуатацию МЗС, входит:
- организация работы подразделения эксплуатации;
- ведение проектной и эксплуатационной документации и предъявление ее контролирующим органам;
- своевременное проведение обслуживания молниеотводов и их ремонт;
- внесение изменений в проектную документацию, возникающих в процессе эксплуатации, если они не противоречат требованиям настоящих Норм;
- ежемесячный осмотр мест установки молнисотводов, проверка наличия ограждений
 и предупреждающих плакатов в местах, предусмотренных проектом. Результаты осмотра заносятся в журнал эксплуатации;
- участие в комиссиях, осуществляющих контроль над эксплуатацией M3C по п.7.2.

Ответственный за эксплуатацию молниезащитной системы докладывает о ее состоянии один раз в квартал, а также после проведения любых работ на территории размещения МЗС, после прямого удара молнии в молниеотводы или прилегающую территорию, главному инженеру части.

7.1.11 Для обеспечения надежной работы молниезащитной системы ежегодно перед началом грозового сезона (или в случае организации контроля состояния молниеотводов по п.7.2) приказом командира части назначается плановая проверка.

В приказе командира части указываются:

- номера, шифры, названия объектов, подлежащих проверке;
- причина проверки;
- сроки проведения работ;
- назначение и состав комиссии;

- необходимый объем работ по контролю МЗС (обследование состояния молниеприемников, опор, токоотводов, заземлителей со вскрытием грунта, измерение сопротивлений заземлителей МЗС без вскрытия грунта и т.п.);
- _ сроки представления и перечень отчетной документации.

Рекомендуемый образец типового приказа приведен в приложении Д.3.8.

В состав комиссии входят:

- председатель комиссии главный инженер части (либо заместитель командира по технической части, начальник хранения);
- члены комиссии: ответственные за молниезащиту в подразделениях (начальник подразделения, на территории которого находится МЗС); начальник службы ППЗ и СР; представители (при необходимости) КЭЧ (КЭУ, ОМИС).
- 7.1.12 Результаты проверки состояния МЗС оформляются в соответствии с п.7.2.4 и один экземпляр акта проверки состояния МЗС направляется в КЭЧ (КЭУ, ОМИС) для включения в план капитального или текущего ремонта молниеотводов. В акте должны быть приведены номера молниеотводов и характеристика их дефектов, установленных комиссией.
- 7.1.13 Финансирование капитального ремонта и реконструкции молниезащитных систем объектов военной инфраструктуры МО возлагается на КЭЧ (ОМИС) района.

В КЭЧ (ОМИС) должен производиться учет молниеотводов и их состояния в подведомственных ей воинских частях. Перечень молниеотводов, требующих ремонта или реконструкции, по представлению Акта проверки комиссией, назначенной командиром части, должен заноситься в журнал учета состояния МЗС в КЭЧ (ОМИС) либо инвентаризационную ведомость.

Текущий ремонт, не требующий привлечения дополнительных средств, выполняется силами эксплуатирующих подразделений.

7.2 Организация контроля состояния молниезащитной системы

- 7.2.1 Контроль состояния МЗС выполняется комиссией, назначенной приказом командира части в соответствии с п.7.1.11, в следующих случаях:
- при завершении строительства молниезащитной системы;
- при изменении категории объекта молниезащиты;

- в сроки, установленные планом регламентных работ (не реже одного раза в год и обязательно перед началом грозового периода в заданном регионе);
- при поражении молнией объектов или молниеотводов, а также после стихийных бедствий (ураганный ветер, наводнение, землетрясение, пожар и т.д.);
- после выполнения ремонтных работ на молниеотводах и вблизи них;
- при изменении требований к параметрам молниезащиты (введение нового нормативного документа), для установления соответствия существующей МЗС новым требованиям (при необходимости).
- 7.2.2 Во время контроля состояния МЗС комиссией, предусмотренной в п.7.1.11, должны быть выполнены следующие мероприятия:
- проверка соответствия параметров и характеристик МЗС ее проектному решению.
 При обнаружении несоответствия проектному решению, следует выявить причину изменения, и в случае принятия измененного варианта, внести эти изменения в проектную документацию;
- проверка визуальным осмотром (с помощью бинокля) целостности молниеприемников и токоотводов, надежности их соединений и креплений к мачтам. Надежность
 механических соединений проверяется простукиванием конструкций молотком весом 1,5-2кг. Надежность электрических контактов проверяется путем измерения сопротивления цепи от молниеприемника до заземлителя любым омметром (приложение Д.2);
- выявление элементов молниезащиты, требующих замены или ремонта вследствие механических или термических повреждений;
- осмотр и измерение толщины (диаметров) всех элементов, находящихся в агрессивных средах. Уменьшенные сечения токоспусков или заземлителей должны быть восстановлены или заменены;
- контроль наличия предупреждающих и информационных плакатов, показывающих номера установленных молниеотводов, схему размещения их на объекте, или предупреждающих пешеходов и водителей о размещении молниеотводов и их заземлителей вблизи дорог по п.п.6.2.5, 7.1.7 и приложению Д.4.
- 7.2.3 Работы по контролю состояния заземлителей производится в следующих случаях:
- один раз в год перед началом грозового сезона;

П р и м е ч а н и е - Выполняется проверка заземляющего устройства в составе всего устройства молниезащиты, включающая проведение замеров сопротивления заземляющего устройства молниеотвода (приложение Д.2) и контроль качества и надежности соединений элементов заземляющего устройства с молниеотводом.

- при возникновении на территории объекта аварийных ситуаций, связанных с ударом молнии в объект. Обследованию подлежат заземлители в зоне прямого удара молнии;
- периодического контроля со вскрытием грунта.

Примечания

- 1. Контролю со вскрытием в течение пяти лет должны подвергаться все искусственные заземлители, токоотводы и места их присоединений, при этом ежегодно необходимо проверять не менее 20% их общего количества.
- 2 Пораженные коррозией заземлители и токоотводы при уменьшении их площади поперечного сечения более чем на 25% должны быть заменены новыми.

Внеочередные замеры сопротивления заземлителей следует производить после выполнения ремонтных работ, связанных со вскрытием грунта и изменением их конструктивного решения. Все конструктивные изменения должны быть согласованы с проектной организацией и внесены в проект.

7.2.4 Результаты проверок комиссией оформляются актами и протоколами (приложение Д.3.6), заносятся в журнал учета состояния молниезащитной системы (приложение Д.3.7). На основании этих данных составляется план ремонта и устранения дефектов молниеотводов, обнаруженных во время осмотров и проверок.

Протоколы замеров сопротивления заземлителей, акты проверки состояния молниеотводов и план устранения замечаний подшиваются в дело по молниезащите и представляются вышестоящей организации.

Приложение А (справочное)

Молния и ее воздействие на поражаемые объекты

Исходя из анализа грозовой активности, на большей территории РФ (см. приложение В) здания и сооружения редко поражаются молнией. Однако каждый удар молнии в незащищенное здание может привести к выходу из строя радиоэлектронного и электротехнического оборудования и значительному материальному ущербу. Особенно тяжелые последствия вызывают удары молнии во взрывоопасные и огнеопасные сооружения. Разряд молнии внутри незащищенного здания опасен для жизни находящихся в нем людей.

Ток разряда молнии не представляет опасности для металлических проводников большого сечения или металлических частей здания, имеющих хорошее соединение между собой и с землей. Однако поражение молнией объектов, не имеющих электрического соединения с землей, или объектов из непроводящего материала (кирпич, бетон, камень, дерево и т. п.) вызывает пробой от точки удара молнии к земле. Образование канала разряда в толще непроводящего материала, сопровождающееся созданием высокого давления и температуры, приводит к разрушению элементов объекта, по которым проходит ток молнии. Удар молнии приводит к разрушению кирпичных дымовых труб, деревянных домов, деревьев, каменных бащен и т. д. Соприкосновение канала молнии, имеющего высокую температуру, с легковоспламеняющимися и горючими материалами или взрывоопасными смесями газов, паров и пыли вызывает пожар или взрыв.

Повреждения в сооружениях

Воздействие молнии на сооружение может вызвать повреждения, как самого сооружения, так и находящихся в нем людей, а также его имущества и ТС, включая выход из строя внутренних систем. Повреждения и аварии могут также произойти с любыми объектами, находящимися в окрестности сооружения, и даже оказывать влияние на окружающую среду. Масштаб такого воздействия зависит от характеристик сооружения и характеристик разряда молнии.

Источником повреждения сооружения является ток молнии. В зависимости от места удара молнии относительно сооружения возможны следующие ситуации, которые необходимо учитывать [3,5]:

- разряды в сооружение,
- разряды вблизи сооружения,
- разряды в коммуникации, входящие в сооружение,
- разряды вблизи коммуникаций, входящих в сооружение.

Разряды молнии в сооружение могут вызвать:

- прямые механические повреждения, возгорание и/или взрыв в результате воздействия дуги молнии или тока, приводящего к электрическому нагреву (перегреву) проводников, или заряда, который может вызвать расплавление металла;
- возгорание и/или взрыв, возникающие из—за искровых разрядов, вызванных перенапряжениями, причиной которых являются резистивная и индуктивная связи и прохождение части тока молнии;
- поражения людей вследствие их попадания под напряжения шага и прикосновения, возникающие из—за резистивной и индуктивной связей;
- отказы или сбои в работе внутренних систем из—за электромагнитного влияния полей разряда моднии.

Разряды вблизи сооружения могут вызвать:

отказы или сбои в работе внутренних систем из—за воздействия электромагнитных полей разряда молнии.

Разряды в коммуникации, входящие в сооружение, могут вызвать:

- пожар и/или взрыв, возникающий из-за искровых разрядов, вызванных перенапряжениями и токами молнии, протекающими по входящим коммуникациям;
- поражения людей вследствие их попадания под напряжения прикосновения внутри сооружения, причиной появления которых является ток молнии, распространяющийся по входящим коммуникациям;
- отказы или неправильную работу внутренних систем из-за перенапряжений, появляющихся на входящих линиях и передающихся в сооружение.

Разряды вблизи коммуникаций, входящих в сооружение, могут вызвать:

 отказы или неправильную работу внутренних систем из—за перенапряжений, индуцированных на линиях ввода и проходящих в сооружение.

Повреждения коммуникаций

Молния, воздействуя на коммуникации, может повредить как само физическое устройство (кабель или трубу), которое используется в качестве средства коммуникации, так и присоединенное к ним электрическое или электронное оборудование.

Масштаб влияния молнии зависит от характеристик коммуникаций, типа и протяженности используемых электрических и электронных систем, и от характеристик разряда молнии.

Воздействия молнии на коммуникации

Основные характеристики коммуникаций, по которым происходит воздействие молнии, следующие:

- конструкция (коммуникация: над поверхностью грунта, в грунте, экранированная, неэкранированная, оптоволоконная; труба: металлическая, пластмассовая);
- функция (телекоммуникационная линия, силовая линия, трубопровод);
- энергоснабжение сооружения (конструкция, содержимое, размеры, местоположение);
- имеющиеся или предусмотренные меры защиты (например, экранирование провода, устройства защиты от перенапряжений, дублирование маршрута, системы хранения текучих сред, генераторные агрегаты, системы беспрерывного питания).

В зависимости от места удара молнии возможны следующие случаи, связанные с коммуникациями, которые необходимо учитывать:

- разряды в сооружение с подведенными коммуникациями,
- разряды в коммуникации, входящие в сооружение,
- разряды вблизи коммуникаций, входящих в сооружение.

Разряды в сооружение с коммуникациями, подводящими в него электроэнергию, могут приводить к следующим последствиям:

- плавлению металлических проводов и экранов кабелей в результате того, что часть тока молнии, текущая в коммуникациях, приводит к их нагреву;
- пробою изоляции линий и присоединенного оборудования из-за резистивной связи;
- пробиванию неметаллических уплотнительных прокладок во фланцах труб, а также уплотнителей в изолирующих муфтах.

Воздействию разрядов молнии не подвергаются оптоволоконные кабели, не содержащие металлических проводников.

Разряды в коммуникации, входящие в сооружение, могут вызвать:

- прямые воздействия в виде механических повреждений металлических проводов или труб системы коммуникаций из—за электродинамического или термического воздействий тока молнии (разрушение и/или плавление металлических проводов, экранов или труб), или вследствие высокой температуры дуги молнии (пробивание защитного пластмассового покрытия);
- электрическое повреждение линий (пробой изоляции) и присоединенного оборудования;
- деформацию (продавливание) тонких металлических труб, расположенных над поверхностью грунта, и пробой неметаллических уплотнителей (прокладок) во фланцах, разряды в

<u>ВСП 22 - 02 - 07</u> МО РФ

которые могут привести к воспламенению или взрыву, в зависимости от свойств проходящих по трубам текучих сред (жидкости или газа).

Разряды вблизи коммуникаций, входящих в сооружение, могут вызвать:

пробой изоляции у линий и присоединенного оборудования из-за индуктивной связи (индуцированного перенапряжения).

Воздействию разрядов молнии, ударяющей в землю не подвергаются не содержащие металлических проводников оптоволоконные кабели.

Каждый тип повреждения, в отдельности или в комбинации с другими типами повреждений, может приводить к различным видам нанесенного защищаемому объекту ущерба. Тип возможного ущерба зависит и от характеристик и назначения защищаемого объекта.

Таким образом, каждое здание и сооружение в зависимости от его конструкции, должно быть защищено от ударов молнии. Защита зданий и сооружений, которые могут быть поражены током молнии или могут пострадать в результате вызванного молнией взрыва или пожара, обеспечивает одновременно защиту оборудования и находящихся в них людей.

Приложение Б (рекомендуемое)

Параметры разрядов молнии

В приложении Б приведены сведения о параметрах разряда молнии, используемые для нормирования средств защиты от ударов молнии рекомендованные стандартами Международной Электротехнической Комиссии (МЭК) и «Инструкций по молниезащите ...» (СО-153-343.21.122-2003).

Существуют два основных типа разрядов:

- нисходящие разряды, инициированные нисходящим с облака на землю лидером;
- восходящие разряды, инициированные лидером, восходящим от заземленного сооружения к облаку.

Ток молнии состоит из первого короткого и последующих (одного или нескольких) повторных разрядов.

На равнинной местности и в районах с невысокими сооружениями в основном встречаются нисходящие разряды, в то время как в окрестностях выступающих и/или более высоких сооружений начинают преобладать восходящие разряды. С ростом эффективной высоты объекта увеличивается вероятность ударов молнии, и меняются физические условия.

Предполагается, что 10% молний имеют положительную полярность, а 90% молний – отрицательную полярность. Соотношение полярностей зависит от местности.

Все указанные в этом приложении значения относятся к разрядам обоих типов – нисхоляшим и восходящим.

Степень механического воздействия молнии зависит от амплитуды импульса тока (I) и удельной энергии (W/R). Термическое воздействие определяется удельной энергией (W/R), при наличии гальванической связи, и зарядом (Q), когда в сторону объекта развиваются дуговые разряды. Перенапряжения и опасное искрение, вызываемые индуктивной связью, зависят от средней кругизны (di/dt) фронта тока молнии [5].

Каждый параметр в отдельности стремится доминировать во всех механизмах разрушения. Это следует учитывать при разработке методики испытаний.

Первый короткий разряд и длинный разряд

Величины *I, Q, W/R*, определяющие механические и термические воздействия, рассчитываются для положительных разрядов как наиболее энергоемких и обладающих максимальной энергией. С вероятностью ниже 10% могут быть получены следующие значения параметров первого короткого разряда, форма которого приведена на рисунке Б.1 [5,12]:

- амплитуда первого короткого разряда, I = 200 кA;
- полный заряд, обусловленный током молнии, $Q = 300 \, \mathrm{Kn}$;
- заряд первого (короткого) разряда молнии, $Q_1 = 100 \text{ K}$ л;
- удельная энергия разряда молнии, W/R = 10000 кДж/Ом;
- \sim крутизна нарастания тока молнии, di/dt = 20 кА/мкс.
- длительность фронта первого (короткого) разряда, $T_1 = I/(di/dt) = 10$ мкс (параметр T_1 для первого короткого разряда имеет второстепенное значение).

Для нахождения приближенных значений переносимого заряда и удельной энергии экспоненциально затухающего разряда применяются следующие формулы $(T_I << T_2)$ [12]:

$$Q_1 = (1/0,7) \times I \times T_2;$$

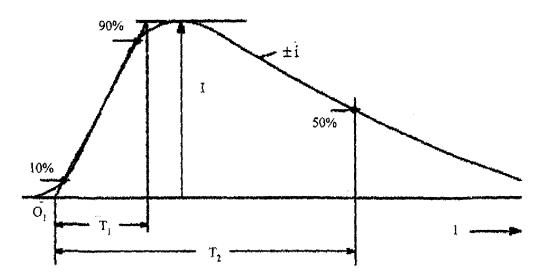
 $W/R = (1/2) \times (1/0,7) \times I^2 \times T_2.$

Эти формулы совместно с приведенными выше значениями позволяют определить в первом приближении длительность на уровне $0.5I_{\rm max}$: T_2 =350мкс.

Форма импульсов тока определяется следующим выражением

$$i(t) = \left| I(t/\tau_1)^{10} \exp(t/\tau_2) \right| / h \left[1 + (t/\tau_1)^{10} \right],$$

где І - максимальное значение (амплитуда) первого (короткого) разряда;


BCII 22 - 02 - 07 ΜΟ ΡΦ

h - коэффициент, корректирующий значение амплитуды тока;

t - время;

 τ_1 - постоянная времени для фронта;

 au_2 - постоянная времени для спада.

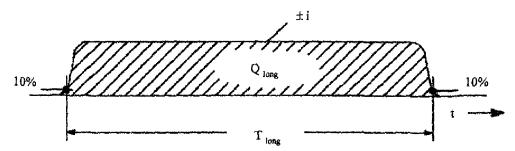

 O_1 — виртуальное начало; I — амплитуда тока; T_1 — длительность фронта; T_2 — длительность на уровне $0.5 I_{max}$ (время до полуспада)

Рисунок Б.1 - Графическое описание параметров короткого разряда

Для длинного разряда переносимый заряд можно приблизительно вычислить следующим образом:

 $Q_2 = Q - Q_1 = 200 \text{Km}$.

Время существования длинного разряда, в соответствии с рисунком Б.2, можно оценить, исходя из общей длительности разряда: T_3 =0,5c [12].

 T_3 = продолжительность длинного разряда; Q_2 = заряд, переносимый длинным разрядом

Рисунок Б.2 - Схематичное изображение параметров длинного разряда

Последующий (повторный) короткий разряд

Максимальное значение средней крутизны di/dt, от которого зависит возможность искрообразования (опасного искрения), вызываемого индуктивной связью, определяется при повторных коротких разрядах отрицательной полярности. С вероятностью ниже 10% могут быть получены следующие значения параметров повторного короткого разряда [5,12]:

I=50KA; di/dt=200KA/MKC.

В соответствии с рисунком Б.3 эти значения дают первое приближение для длительности фронта повторного короткого разряда:

 $T_1 = I/(di/dt) = 0.25$ mKC.

Длительность повторного короткого разряда на уровне $0.5 I_{max}$.

 T_2 =100мкс (параметр T_2 повторного короткого разряда имеет второстепенное значение). Форма импульса тока последующего короткого удара приведена на рисунке Б.4.

Спектральная плотность тока молнии, при его максимальных значениях, представлена на рисунке Б.5 [5,12].

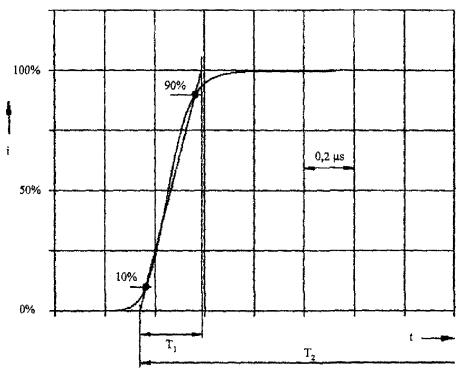


Рисунок Б.3 - Форма импульса тока на участке его нарастания для последующих коротких разрядов

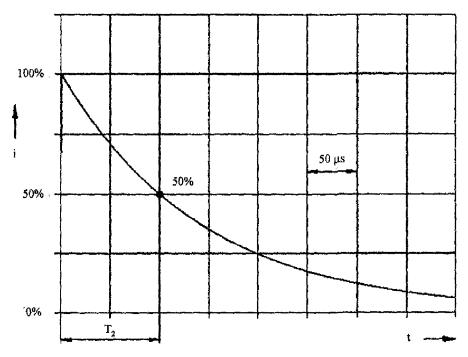


Рисунок Б.4 - Форма импульса тока на спаде для последующих коротких ударов

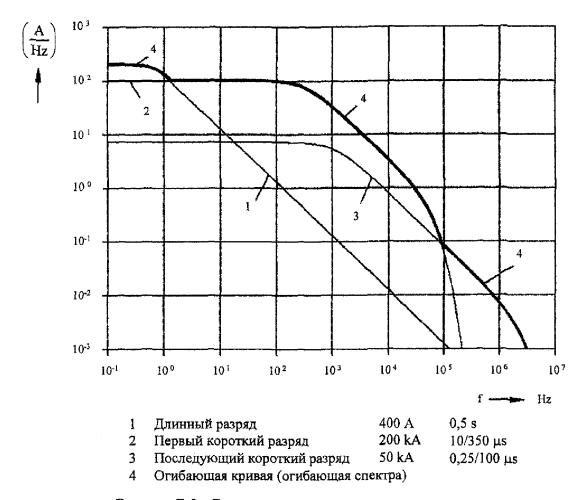


Рисунок Б.5 - Спектральная плотность тока молнии

Для снижения негативного воздействия токов молнии, параметры которых приведены выше, разрабатываются меры защиты с учетом величины тока молнии соответствующего требуемому уровню защиты (уровню молниезащиты). Амплитудные значения максимального и минимального тока молнии первого короткого разряда и соответствующие ему уровни молниезащиты, установленные в стандартах МЭК, приведены в таблице Б.1 [5,12].

ТаблицаБ.1

		Уровень молниезащиты			
Первый короткий и длинный разряд	I	$\overline{\mathbf{n}}$	m		
Амплитуда максимального тока молнии I_{\max} , кА	200	150	100		
Вероятность того, что параметр тока молнии меньше его максимального значения I_{\max}	0,99	0,98	0,97		
Амплитуда минимального тока молнии I_{\min} , кА	3	5	10		
Вероятность того, что параметры тока молнии превышают его минимальные значения I_{\min}	0,99	0,97	0,91		
Полный заряд, обусловленный током молнии Q, Кл	300	225	150		

Значения максимального тока молнии I_{\max} используются в испытательных целях для оценки термического и электродинамического действия тока на элементы МЗС, ограждающие конструкции сооружения, коммуникации и защитные аппараты.

Значения минимального тока молнии I_{\min} используются для определения критериев перехвата молнии внешней МЗС (определения эффективности перехвата разряда молнии). Геометрические границы зон защищенных от прямых ударов молнии по рекомендациям МЭК оп-

ределяются радиусом катящейся сферы $R=10~I_{\min}^{0.65}$ для каждого из уровней молниезащиты. Эффективность перехвата определяется по вероятности события, при котором параметры тока молнии не превышают его установленного минимального значения I_{\min} .

Уровень молниезащиты характеризуется вероятностью перехвата минимального тока молнии и суммарным материальным ущербом от негативных последствий воздействия максимального тока молнии (совместно с его длиннопериодным и последующими разрядами).

Параметры тока молнии, предлагаемые для нормирования средств защиты от прямых ударов молнии, приведены в таблице Б.2.

ТаблицаБ.2

			Уровенн	защиты		-	
Параметр молнии	П	первый импульс			последующий импульс		
	1	П	m	I	П	Ш	
Максимум тока <i>І_{тах}</i> , кА	200	150	100	50	37,5	25	
Длительность фронта T_I , мкс	10	10	10	0,25	0,25	0,25	
Время полуспада T_2 , мкс	350	350	350	100	100	100	
Заряд в импульса Q*, Кл	100	75	50	-	-	-	
Удельная энергия <i>W/R</i> **, МДж/Ом	10	5,6	2,5	-	-	_	
Средняя крутизна α, κΑ/мкс	20	15	10	200	150	100	

^{*} Поскольку значительная часть общего заряда Q приходится на первый импульс, полагается, что общий заряд всех коротких импульсов равен приведенному значению.

Вероятность (доля) появления разрядов молнии с амплитудой импульса тока первой компоненты, превыплающей величину тока $I_{\rm max}$, приведена в таблице Б.3.

ТаблипаБ.3

Амплитуда импульса тока первой компоненты, I _{тах} кА	30	50	70	10	150	200	250
Доля амплитуды импульса тока первой компоненты к общему числу разрядов, %	55	25	8	2,5	0.4	0,1	0,03

^{**} Поскольку значительная часть общей удельной энергии W/R приходится на первый импульс, полагается, что общий заряд всех коротких импульсов равен приведенному значению.

Приложение В (рекомендуемое)

Грозопоражаемость зданий и сооружений и интенсивность грозовой деятельности

Поражаемость молнией зданий и сооружений находится в прямой зависимости от вероятного количества грозовых разрядов в данной местности. Для большинства объектов ожидаемое количество поражений молнией N_{π} является показателем, определяющим необходимость выполнения молниезащиты на стадии проектирования. Одним из показателей количества поражений может служить число грозовых дней за определенный период.

Удельная плотность (n) ударов молнии в землю для данной местности задается в зависимости от среднегодовой продолжительности гроз в часах за год П. Значения П определяются по средним многолетним данным метеостанций, ближайших к месту расположения объекта, либо по утвержденным для некоторых регионов картам интенсивности грозовой деятельности. На территории России связь между удельной плотностью n и среднегодовой продолжительностью гроз П представлена в таблице В.1.

ТаблицаВ.1

Среднегодовая продолжительность гроз П, час/год	Удельная плотность n ударов молнии в землю, удар/км ² год
1	2
10 - 20	1
20 - 40	2
40 - 60	4
60-80	5,5
80 - 100	7
100 и более	8,5

При проектировании молниезащиты многолетние данные о продолжительности гроз должны быть запрошены у ближайшей метеостанции и по ним определено значение *n*.

Если достоверные данные о среднегодовой продолжительности гроз в данной местности отсутствуют, значение *п* может быть определено по таблице В.2 исходя из географического положения объекта или по карте средней за год продолжительности гроз в часах для территории России, приведенной в ПУЭ.

Пропорционально числу грозовых дней в году будет изменяться и вероятность поражения молнией единицы площади.

Подсчет ожидаемого количества $N_{\it \Pi}$ поражений молнией в год производится по формулам:

для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)

$$N_{II} = 9 \pi h_0^2 \ n \cdot 10^{-6} \,,$$

для зданий и сооружений прямоугольной формы

$$N_{II} = \left[(a+6h_0)(b+6h_0) - 7.7h_0^2 \right] n \cdot 10^{-6},$$

где h_0 - наибольшая высота здания или сооружения, м;

a,b - соответственно длина и ширина здания или сооружения, м;

n - среднегодовое число ударов молнии в 1км^2 земной поверхности (удельная плотность, ударов молнии в землю) в месте нахождения здания или сооружения.

Для зданий и сооружений сложной конфигурации в качестве a и b рассматриваются длина и ширина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане.

ТаблицаВ.

ТаблицаВ.	,
Местоположение объекта	Плотность уда- ров молнии в эемлю п, 1/км² год
Республика АДЫГЕЯ	8,5
Республика БАШКОР	TOCTAH
Аксаково	2
Белорецк	5,5
Бирск	5,5 5,5
Мелеуз	2 4
Стерлитамак	4
Уфа	4
Республика БУРЯТИЯ	2
Республика ДАГЕСТАН	2 2 2
ИНГУШСКАЯ Республика	2
КАБАРДИНО-БАЛКАРСКАЯ Республика	_
Республика КАРЕ.	,
Кестеньга	1
Кемь - Порт	1
Ладва	2 2 2 2 2 2 2
Медвежъегорск	2
Петрозаводск	2
Пудож	2
Суоярви	2
Юшкозеро	_
Республика КОЛ	ЛИ
Адзьва - Вом	1
Венденга	4
Верхний Щугор	2
Ижма	2 2 2 2
Троицко - Печерское	2
Усть - Унья	2
Ухта	2
Левкинская	2
Сыктывкар	2
Республика МАРИЙ ЭЛ	4
Республика МОРДОВИЯ	4
Республика САХА (ЯІ	
Верхоянск	менее 1
Вилюйск	менее 1
Дружина Екючю	менее 1
Жиганск	1
Зырянка	менее 1
Казачье	менее 1
Крест - Халджай	2
Кюсюр	менее 1
Мостах, остров	менее 1
Мухтуя	2
Нюрба	2
Оленек	менее 1
Охотский перевоз	2

Местоположение объекта	Плотность уда-
	ров молнии в
	землю
	п, 1/км ² год
Верхоянск	менее l
Вилюйск	1
Дружина	менее 1
Екючю	менее 1
Жиганск	1
Зырянка	менее 1
Казачье	менее 1
Крест - Халджай	2
Кюсюр	менее 1
Мостах, остров	менее 1
Мухтуя	2
Нюрба	2
Оленек	менее 1
Охотский перевоз	2
	
Преображения, остров Средне - Колымск	менее 1
	менее 1
Сунтар	2
Сухана	1 1
Сюльдюкар	1
Таймылыр	менее 1
Усть - Мома	менее l
Шелагонцы	1
Якутск	1 OCUMENT
Республика СЕВЕРНАЯ	1
Моздок	2
Владикавказ	
Республика ТАТАР	
Агрыз	Агрыз
Бугульма	4
Казань	2
Республика ТУВА	2
Республика УДМУРТИЯ	2
ЧЕЧЕНСКАЯ Республика	2
ЧУВАШСКАЯ Республика	4
АЛТАЙСКИЙ КН	
Барнаул	4
Бийск - Зональная	4
Змеиногорск	4
Ключи	4
Кош - Агач	1
Рубцовск	5,5
Чемал	5,5
КРАСНОДАРСКИЙ	
Армавир	5,5
Ачишхо	8,5
Ейск	4
Красная поляна	8,5
Краснодар	4
Кропоткин	4

<u>ВСП 22 - 02 - 07</u> МО РФ

Продолжение таблицы В.2

Продолжение таолицы В.2	
Крымская	5,5
Сочи	8,5
Тихорецк	5,5
Туапсе	8,5
Устье - Лабинская	8,5
ПРИМОРСКИЙ К	РАЙ
Валентин	Менее 1
Владивосток	1
Евгеньевка	1
Иман	2
Пластун, бухта	1
Преображения, бухта	Менее 1
Семягино	2
Сучан	1
Уссурийск	i
СТАВРОПОЛЬСКИЙ КРАЙ	i
Бермамыт	8,5
Буденновск (Прикумск)	
Дивное	2 2
	4
Курсавка	
Минеральные воды	4
Невинномысская	44
Ново - Пятигорск	4
Ставрополь	4
Черкесск	5,5
ХАБАРОВСКИЙ КРАЙИ МАГА ОБЛАСТЬ	<i>АДАНСКАЯ</i>
Аркагала	2
Берелех (Сусуман)	1
Бикин	4
Бира	4
Вакханка	1
Вяземская	4
Гроссевичи	менее 1
Иллирней	менее 1
Комсомольск - на-Амуре	2
Магадан, АМСГ	менее 1
Марково	менее 1
Мелководная	менее 1
Нагаева, бухта	
Нелькан	менее 1 1
	1
Николаевск – на-Амуре	1
Облучье	4
Омсукчан, сопка	менее 1
Охотск	менее І
Палатка	менее 1
Им. П. Осипенко	2
Смидовичи	4
Средникан	7
	1
Стрелка	1

Аян	1 100000 1
Хатынах	менее 1
	менее 1
Чумикан	l
Энкан, мыс	менее 1
Атка	1
Березово	менее 1
Дарпир	менее 1
Залив Креста (Эгвекинот)	менее 1
Ко рк одон	менее]
Наяхан	менее 1
Омсукчан	менее 1
Островное	менее 1
Сеймчан	менее 1
Снежное	менее 1
Ултар	менее 1
Усть – Олой	· · · · · · · · · · · · · · · · · · ·
	менее 1
Эльген, совхоз	1
Яранги	менее 1
АМУРСКАЯ ОБЛА	
Архара	4
Благовещенск	4
Ерофей Павлович	4
Завитая	4
Магдагачи	4
Свободный	4
Сковородино	4
Талдан	4
Уруша	4
Шимановская	4
Усть – Нюкжа	2
АРХАНГЕЛЬСКАЯ О	
Архангельск	1
	2
Барковская	
Варандей	менее 1
Овинский Березник	2
Инцы	2
Каргополь	2 2
Карпогоры	
Коноша	4
Котлас	2 2
Красноборск	
Лямца	2
Малые Кармакулы	менее 1
Мезень	1
Хоседа – Хард	1
Шойна	менее 1
Шенкурск	2
АСТРАХАНСКАЯ ОБ	}
Астрахань	1
Бирючья Коса	
	2 2 2
Верхний Баскунчак	
Досанг	
Капустин Яр	4

Продолжение таблицы В.2

Продолжение таблицы В.2				
БЕЛГОРОДСКАЯ ОБЛАСТЬ	7_			
БРЯНСКАЯ ОБЛАСТЬ	7			
ВЛАДИМИРСКАЯ ОБЛАСТЬ				
Владимир	2			
Гороховец	4			
Ковров	4			
ВОЛОГОДСКАЯ ОБ	JIACTL			
Белозерск	4			
Вологда – Прилуки	2			
ВОРОНЕЖСКАЯ ОЕ	<u> </u>			
	4			
Воронеж Каменная Степь	5,5			
L				
Лиски	7			
Россошь	7			
ИВАНОВСКАЯ ОБЛАСТЬ	4			
ИРКУТСКАЯ ОБЛ				
Бодайбо	1			
Братск	2			
Еробогачен	2			
Зима	2			
Илимск	1			
Иркутск	2			
Ичера	2			
Покойники	2			
Половина	2			
Слюдянка	2 2 2 2 2 2 2			
Тайшет	2			
Тулун ж. д.	2			
Усть — Уда	2			
КАЛИНИНГРАДСКАЯ ОБЛАСТЬ	4			
КАЛУЖСКАЯ ОБЛАСТЬ	4			
КАМЧАТСКАЯ ОБЛАСТЬ				
	менее 1			
КОСТРОМСКАЯ ОБЛАСТЬ	4			
КЕМЕРОВСКАЯ ОБ				
Кольчугино	2			
Новокузнецк	4			
Тайга	5,5			
КИРОВСКАЯ ОБЛ				
Вятские поляны	2			
Киров	4			
Котельнич	2			
Мураши	2 2 4			
КУРГАНСКАЯ ОБЛАСТЬ	4			
КУРСКАЯ ОБЛАСТЬ	5,5			
ЛЕНИНГРАДСКАЯ О				
Кингисепп	2			
Санкт – Петербург	2			
Тихвин	4			
ЛИПЕЦКАЯ ОБЛ				
Грязи	4			
Елец	 			
Лев Толстой	5,5			
THE LOUGION	4			

	1 4
Волоколамск	4 2
Москва, ВВЦ	2
Ново – Иерусалим	4
Павловский – Посад	2
МУРМАНСКАЯ ОБ.	
Апатиты	менее 1
Ена	1
Кировская	менее 1
Краснощелье	менее 1
Ловозеро	1
Мончегорск	менее 1
Мурманск	менее 1
Ниванкюль	1
Пулозеро	1
Пялица	1
Терибетка	менее 1
Хибины	менее 1
НИЖЕГОРОДСКАЯ С	БЛАСТЬ
Арзамас	5,5
Нижний Новгород	4
Лукоянов	4
Шахунья	2
НОВГОРОДСКАЯ ОБЛАСТЬ	4
НОВОСИБИРСКАЯ	4
ОБЛАСТЬ	,
ОМСКАЯ ОБЛАС	Th
Омск	2
Tapa	4
ОРЕНБУРГСКАЯ ОЕ	ЛАСТЬ
Абдулино	2
Ак – Булак	2 2 2 2
Бузулук	2
Кувандык	2
Ново – Сергиевка	4
	2
Оренбург	2 2
Оренбург Соль – Илецк	2 2 5.5
Оренбург Соль – Илецк <i>ОРЛОВСКАЯ ОБЛАСТЬ</i>	2 2 5,5 4
Оренбург Соль – Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ	5,5 4
Оренбург Соль – Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА	5,5 4 4CTL
Оренбург Соль – Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер	5,5 4 4CTb 4
Оренбург Соль — Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел	5,5 4 4CTb 4 4
Оренбург Соль – Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар	5,5 4 4CTB 4 4 4
Оренбург Соль – Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар Кунгур	5,5 4 4CTB 4 4 4 4 5,5
Оренбург Соль — Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар Кунгур Пермь	5,5 4 4CTb 4 4 4 5,5 4
Оренбург Соль — Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар Кунгур Пермь Полюдов Камень	5,5 4 4CTB 4 4 4 5,5 4 5,5
Оренбург Соль — Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар Кунгур Пермь Полюдов Камень Соликамск	5,5 4 4CTB 4 4 4 5,5 4 5,5 4
Оренбург Соль – Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар Кунгур Пермь Полюдов Камень Соликамск Чернушка	5,5 4 4CTb 4 4 4 5,5 4 5,5 4 4
Оренбург Соль – Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар Кунгур Пермь Полюдов Камень Соликамск Чернушка ПСКОВСКАЯ ОБЛАСТЬ	5,5 4 4CTb 4 4 5,5 4 5,5 4 4 4 4 4 4 4 4 4 4 4 4 4
Оренбург Соль — Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар Кунгур Пермь Полюдов Камень Соликамск Чернушка ПСКОВСКАЯ ОБЛАСТЬ РОСТОВСКАЯ ОБЛ	5,5 4 4CTB 4 4 5,5 4 5,5 4 4 4 4 4 4
Оренбург Соль – Илецк ОРЛОВСКАЯ ОБЛАСТЬ ПЕНЗЕНСКАЯ ОБЛАСТЬ ПЕРМСКАЯ ОБЛА Бисер Кизел Кудымкар Кунгур Пермь Полюдов Камень Соликамск Чернушка ПСКОВСКАЯ ОБЛАСТЬ	5,5 4 4CTb 4 4 5,5 4 5,5 4 4 4 4 4 4 4 4 4 4 4 4 4

<u>ВСП 22 - 02 - 07</u> МО РФ

Окончание таблицы В.2

Окончание таблицы В.2	
Миллерово	7
Морозовск	5,5
Ростов – на – Дону	2
Гигант	4
Чертково	4
САРАТОВСКАЯ ОБ	ЛАСТЬ
Александров Гай	4
Аткарск	4
Балашов	4
Ершов	4
Привольск	2
Пугачев	5,5
Ртицево	2
Саратов	2
САХАЛИНСКАЯ ОБ	<i>ЛАСТЬ</i>
Александров-на-Сахалине	менее 1
Взморье	менее 1
Виахту	1
Долинск	менее 1
Елизавета, мыс	менее l
Красногорск	менее 1
Крильон	1
Курильск	менее 1
Лесогорск	менее 1
Макаров	менее l
Онор	1
Оха - на - Сахалине	менее I
Пильво	1
Погиби	1
Пограничный комбинат	менее 1
Победино (Смирных)	менее l
Поронайск	менее 1
Свободный, мыс	менее 1
Терепения, мыс	менее 1
Углегорск	менее 1
Чайво	менее 1
Южно - Курильск	менее 1
СВЕРДЛОВСКАЯ О	
Верхоутье	4
Ивдель	2
Камышлов	4
Капралово	2
Красноуфимск	4
Нижний Тагил	4
Свердловск	4
Туринск	4
СМОЛЕНСКАЯ ОБ	
Вязьма	2
Ельня	5,5
LAURICA	1

Рославль	5,5	
Смоленск	4	
ТАМБОВСКАЯ ОБЛАСТЬ	4	
ТВЕРСКАЯ ОБЛА	ТВЕРСКАЯ ОБЛАСТЬ	
Осташков	5,5	
Ржев	5,5	
Тверь	4	
Торжок	4	
ТОМСКАЯ ОБЛАСТЬ	4	
ТУЛЬСКАЯ ОБЛАСТЬ	5,5	
ТЮМЕНСКАЯ ОБЛАСТЬ		
Ишим	5, 5	
Маре - Сале	менее l	
Мужи	1	
УЛЬЯНОВСКАЯ ОБЛ		
Инза	3,5	
Мелекесс	4	
Ульяновск	2	
ЧЕЛЯБИНСКАЯ ОБЛ	ЧЕЛЯБИНСКАЯ ОБЛАСТЬ	
Златоуст	4	
Кропачево	5,5	
Магнитогорск	4	
Троицк	4	
Уфалей	7	
Челябинск, АМСГ	2	
ЧИТИНСКАЯ ОБЛА		
Амазар	4	
Зилово	4	
Карымская	4	
Ксеньевская	2	
Оловянная	2	
Петровский завод	4	
Чита	5,5	
Шилка	2	
Мыс дровяной	менее 1	
Новый Порт	1	
Салехард	1	
Саран - Пауль	1	
Се - Яга	менее 1	
Сургут	2	
Тобольск	2	
Ишим	5,5	
Тюмень	4	
Уренгой	2	
Ханты – Мансийск	2	
ЯРОСЛАВСКАЯ ОБЛАСТЬ		
Рыбинск	2 4	
Ярославль	/1	

Например, в местности с числом грозовых дней H=60, вероятность поражения вышки высотой h_0 =100м составляет N_{π} =1,13, для условного объекта размерами 40х40х10м- N_{π} =0,037.

Это означает, что при отсутствии молниезащиты выплика высотой 100м может поражаться молнией примерно один раз в год, а условный объект размерами 40х40х10м – примерно 4 раза за сто лет.

Для вышки в заданной местности число ударов молнии уменьшить невозможно. Следует обеспечить наиболее безопасные пути протекания тока молнии и его стекание в грунт через заземлитель с минимальным сопротивлением, защиту персонала, и при необходимости, принятие мер по защите от вторичных проявления молниевых разрядов.

Для условного объекта 40x40x10м можно обеспечить снижение частоты N_{∂} удара молнии в объект, до величины 0,01 или 0,001уд/год (в зависимости от эффективности выбранного средства защиты), что соответствует уменьшению числа поражений сооружения в 3,7 или 37 раз соответственно. Это означает, что при защите здания отдельно стоящими молнисотводами оно будет поражаться один раз в 100 или 1000 лет.

Предельно допустимая частота N_{θ} удара молнии задается техническим заданием на проектирование молниезащиты объектов военной инфраструктуры. Частота ударов N_{θ} является исходной предпосылкой для задания эффективности P_H уровня молниезащитной системы зданий и сооружений.

Приложение Г (справочное)

Типовые решения по защите от прямых ударов молнии зданий и сооружений

Примеры конструктивных решений, касающиеся общих принципов устройства внешней молниезащитной системы, приведенные в Приложении Г, частично заимствованы из стандарта IEC 62.305-3.

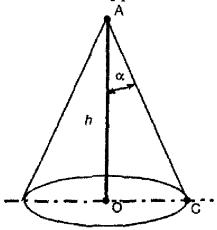
Г.1 Типовые решения по молниезащите одиночным стержневым молниеотводом

Отдельно стоящий одиночный стержневой молниеотвод может быть использован для защиты специальных сооружений высотой до 10м и площадью до 100м².

Преимущественно одиночный стержневой молниеприемник устанавливается непосредственно на сооружениях (зданиях) высотой до 60м с уровнем надежности молниезащиты не превышающем $P \le 0.99$.

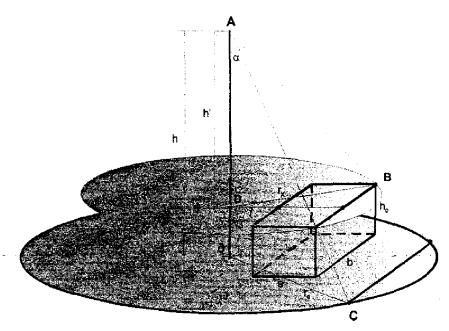
Стандартной зоной защиты одиночного стержневого молниеотвода высотой h является круговой конус, вершина которого совпадает с вертикальной осью молниеотвода, рисунки Γ .1, Γ .2.

Зона защиты определяется по углу защиты α от вершины стержневого или тросового молниеприемника до наиболее удаленной точки В объекта на его высоте h_0 при заданной эффективности P_H молниезащиты.


В зону защиты стержневого молниеотвода входит также все пространство, что находится ниже горизонтального сечения на высоте объекта h_0 , образованного под углом α к вертикальной оси молниеприемника. Эффективность молниезащиты P_H задана на внешней границе конуса, образованного под углом α .

В глубине зоны защиты надежность значительно выше, чем на ее внешней границе.

Угод защиты α определяется по таблице 2.1 для требуемой эффективности молниезащиты P_H .


Расстояние от стержневого молниеотвода до края защищаемого объекта по воздуху, в зависимости от категории молниезащиты, определяется по п.2.1.

При необходимом обосновании расстояние ℓ может быть увеличено, что приведет к увеличению угла защиты α и соответственно эффективности P_H молниезащиты.

А – вершина молниеотвода; ОС – радиус защиты на уровне земли;
 h – высота молниеотвода; α - угол защиты

Рисунок Г.1 - Зона защиты отдельно стоящего одиночного стержневого молниеотвода

 r_x – радиус защиты на высоте здания h_0 ; ℓ – расстояние между защищаемым объектом и молниеприемником; h' – эффективная часть стержневого молниеотвода

Рисунок Γ .2 - Зона защиты отдельно стоящего одиночного стержневого молниеотвода для прямоугольного объекта размерами $a \times b \times h_0$

Примеры определения зон и угла защиты одиночного стержневого молниеотвода, установленного непосредственно на здании, приведены на рисунке Г.3.

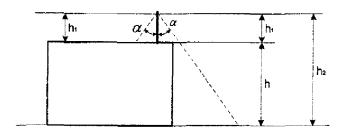
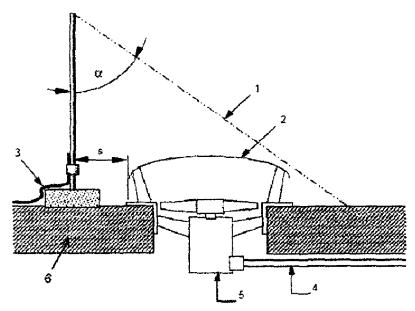
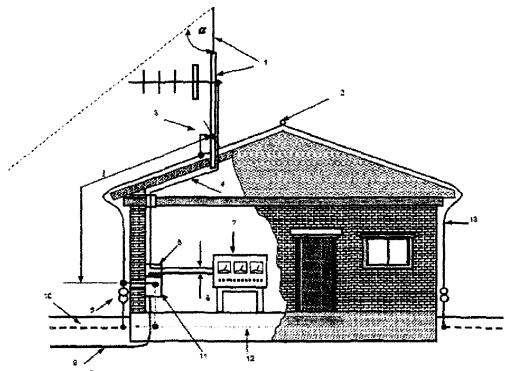



Рисунок Г.3 - Зона защиты стержневого молниеотвода, установленного на здании


На рисунке Г.4 дан пример устройства молниезащиты технологического оборудования, установленного на здании и не связанного с общей системой молниезащиты.

На рисунке Γ .5 приведен пример устройства молниезащиты одиночным молниеотводом антенного оборудования. В примере на рисунке Γ .4 угол защиты α определяется относительно поверхности здания, а в примере на рисунке Γ .5 - относительно поверхности земли.

- 1 защитный конус; 2 металлический кожух; 3 горизонтальный молниеприемный проводник;
 - 4 экранированный электрический кабель; 5 электротехническое оборудование;
 - 6 непроводящее перекрытие; S расстояние от молниеотвода до объекта защита

Рисунок Г.4 - Устройство молниезащиты металлических кожухов и силового оборудования, не связанных с системой молниезащиты

1 – металлическая мачта; 2 – горизонтальный молниеприемный проводник на коньке крыци; 3 – соединение металлической мачты с молниезащитным спуском; 4 – антенный кабель; 5 – соединение экрана антенного кабеля с корпусом распределительного щита; 6 – узел измерения сопротивления заземления; 7 – оборудование связи; 8 – параллельная прокладка антенного и электрического кабелей; 9 – кабель электроснабжения; 10 – система заземления; 11 – распределительный щит с устройством защиты вводов; 12 – арматура фундамента; 13 – молниезащитный спуск

Рисунок Г.5 - Пример устройства молниезащиты с использованием антенной мачты в качестве молниеприемника

Г.2 Типовые решения по молниезащите двухстержневыми и многостержневыми молниеотводами

Зона защиты многостержневых молниеотводов образуется из суммы зон защиты одностержневых молниеотводов, имеющих угол защиты α , отличающийся от угла защиты одностержневого молниеотвода.

Отдельно стоящие двухстержневые молниеотводы следует применять для зданий и сооружений высотой не более 15м и площадью до 500м 2 . При высоте объекта до 5м защищаемая площадь может быть увеличена до 1200м 2 .

Для обеспечения максимальной надежности и минимальной высоты двухстержневых молниеотводов, их расстояние ℓ от края защищаемого объекта не должно превышать 5 метров (выбирать в соответствии $\pi.2.1.2.4$ -2.1.2.6).

Типовые варианты размещения двухстержневых молниеотводов с определением радиусов зон защиты для максимально удаленных точек на высоте h_0 объекта защиты приведены на рисунке Γ .6.

Типовая зона защиты отдельно стоящих двухстержневых молниеотводов приведена на рисунках Γ .7- Γ .9. Угол защиты α_1 между вертикальными двухстержневыми молниеотводами и точками n и m на уровне высоты сооружения определяется по данным таблицы 2.1., исходя из заданной надежности P_H молниезащиты и площади S защищаемого объекта.

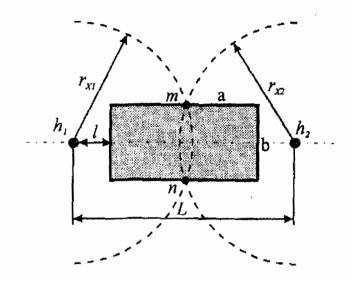
Примеры определения зон защиты двумя стержневыми молниеотводами, установленными непосредственно на здании, приведены на рисунках Г.10-Г.12.

На рисунке $\Gamma.10$ дан пример определения зон защиты (угла α_1) для двухстержневых молниеотводов относительно кровли здания.

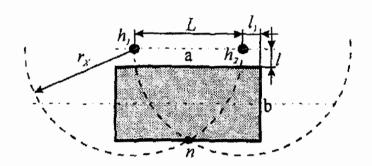
На рисунке $\Gamma.11$ — пример определения внутреннего угла защиты α_1 относительно кровли здания, а угла защиты α_2 - относительно поверхности земли. Внутренний угол защиты α_1 определяется относительно кровли здания по данным таблицы 2.1 для двухстержневого молниеотвода. Внешний угол защиты α_2 определяется относительно поверхности земли также по данным таблицы 2.1, но для одностержневого молниеотвода.

На рисунке Г.12 дан пример определения угла защиты высотного здания с плоской кровлей по IEC 62305.

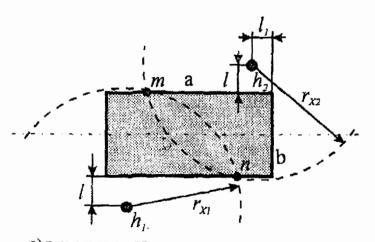
Сравнивая определения угла защиты α_2 по IEC (см. рисунок Γ .12) и по методике используемой в настоящих Нормах (см. рисунок Γ .11), можно отметить, что МЭК исключает из зоны защиты угол здания, в который с наибольшей вероятностью может произойти удар молнии.


Выбор высоты четырехстержневых молниеотводов, установленных на плоской кровле здания производится так же, как и двухстержневых молниеотводов, при условии покрытия всей периферии защищаемого объекта зонами защиты многостержневых молниеотводов. Внутренний угол защиты α для четырехстержневых молниеотводов определяется по данным таблицы 2.1.

Типовые варианты размещения многостержневых отдельно стоящих молниеотводов с определением их радиуса защиты относительно максимально удаленных от молниеотвода точек объекта на высоте h_0 приведены на рисунке Γ .13.


Г.3 Типовые решения по защите одиночным тросовым молниеотводом и молниезащитной сеткой

Защита в виде одиночного тросового молниеотвода наиболее эффективна для объектов прямоугольной формы, длина которых значительно превышает ширину. В этом случае, при малой высоте подвеса троса по оси объекта обеспечивается высокая надежность молниезащиты.


Расстояние от защищаемого объекта до опор для подвеса троса выбирается произвольно с учетом стрелы провиса, но не менее 5 метров от края объекта.

а) традиционное решение двухстержневой молниезащиты

б) одностороннее размещение двухстержневой молниезащиты

в) размещение молниеприемников по диагонали

Рисунок Г.6 - Варианты размещения двухстержневой молниезащиты

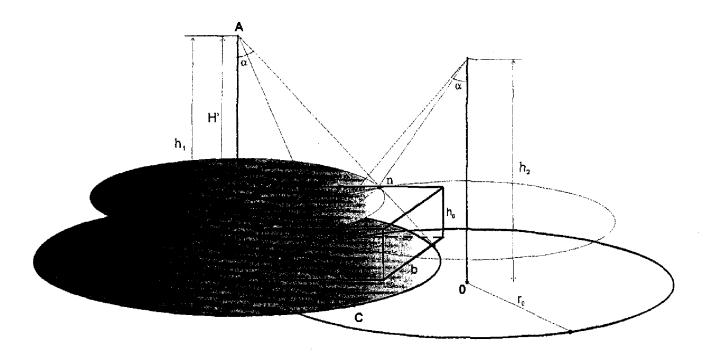
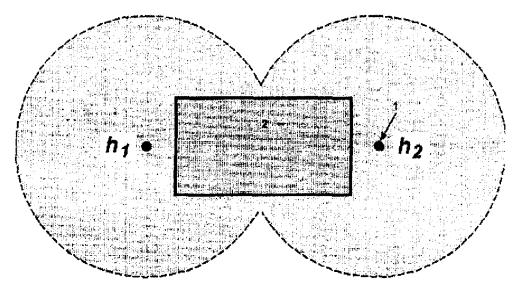
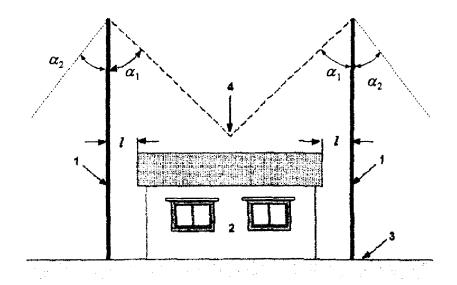




Рисунок Г.7 - Зона защиты двухстержневого молние
отвода для прямоугольного объекта размерами аimesbimesh $_0$

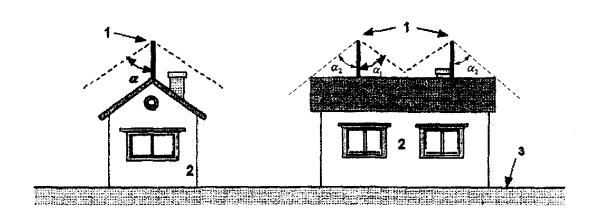

1 – молниеприемник; 2 – объект

Рисунок Г.8 - Зона защиты здания двумя отдельно стоящими молниеотводами в плане на уровне поверхности земли

1 — стержневой молнисотвод; 2 — защищаемый объект; 3 — поверхность земли; 4 — пересечение зон защиты; l — расстояние от объекта до молнисотвода; α_1 — внутренний угол двухстержневых молнисотводов; α_2 — угол защиты стержневого молнисотвода

Рисунок Г.9 - Защита здания двумя отдельно стоящими молниеотводами

1 — молниеприемный стержень; 2 — защищаемый объект; 3 — уровень земли; α_1 — внутренний угол двухстержневых молниеотводов; α_2 — угол защиты стержневого молниеотвода Рисунок $\Gamma.10$ - Пример молниезащиты объекта двумя стержневыми молниеотводами, выбранными методом защитного угла

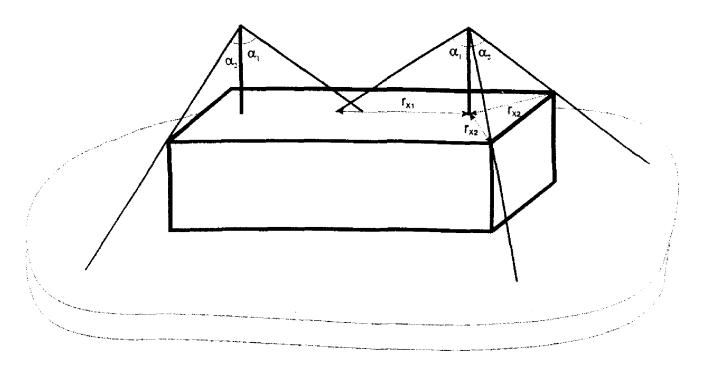
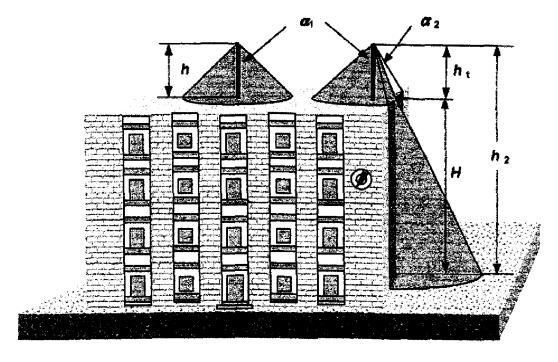
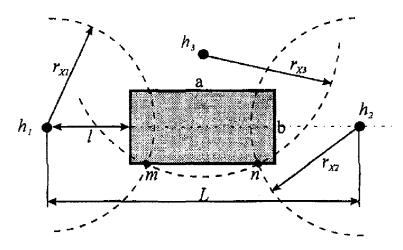
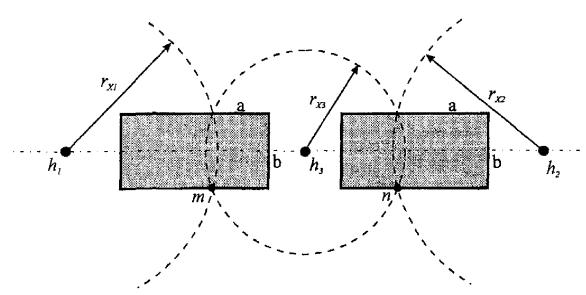
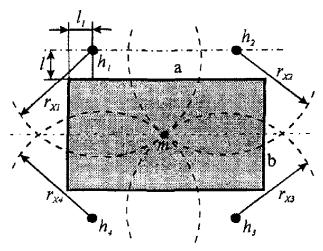


Рисунок Г.11 - Схема молниезащиты сооружения двумя стержневыми молниеотводами, установленными на плоской кровле


Рисунок Г.12 - Угол защиты вертикального молниеотвода при различной высоте защищаемой поверхности, определяемый по IEC 62305

а) трехстержневая молниезащита протяженного объекта

б) трехстержневая молниезащита двух рядом стоящих объектов

в) четырехстержневая молниезащита прямоугольного объекта

Рисунок Г.13 - Варианты размещения и зоны защиты многостержневых молниеотводов

Угол защиты α для одиночного тросового молниеотвода при требуемой эффективности p_H определяется по данным таблицы 2.1 в зависимости от высоты объекта защиты h_0 .

Типовая зона защиты одиночного тросового молниеотвода приведена на рисунке Г.14.

Если конструкция здания выполнена из непроводящих (изоляционных) материалов, то тросовый молниеотвод может устанавливаться на коньке здания, как это показано на рисунке $\Gamma.15$.

Схема защиты здания отдельно стоящим тросовым молниеотводом дана на рисунке Г.16.

Изоляционные расстояния S_1 и S_2 по воздуху до защищаемого объекта, должны быть выбраны в соответствии с п.2.1.2.4-2.1.2.5 для объектов I категории. Для других категорий объектов (п.2.1.3.5) расстояние не нормируется (см. рисунок Γ .16a).

Для сооружений с плоской поверхностью кровли устройство молниезащиты может быть выполнено в виде крупноячеистой сетки. Шаг ячейки определяется в зависимости от категории молниезащиты здания в соответствии с требованиями п.2.1.

Сетка может быть установлена изолированно от конструкций сооружения (рисунок Γ .17) или установлена непосредственно на кровле здания (рисунок Γ .18).

В обоих случаях угол защиты α определяется одинаково относительно поверхности земли. Значения угла защиты α для требуемой эффективности молниезащиты могут быть определены по данным таблицы 2.1 для одиночного тросового молниеотвода.

От сетки к заземлителю должно быть выполнено не менее двух спусков для отвода токов молнии. Оптимальным вариантом является схема с четырьмя спусками, выполненными по углам прямоугольной конструкции. При большой площади здания, оборудование которого требует защиты от вторичных проявлений разряда молнии, спуски должны быть выполнены с шагом 8-24м.

Г.4 Типовые решения по выполнению узлов и деталей внешней и внутренней молниезащитной системы

Г.4.1 Железобетонная арматура зданий как элемент внешней молниезащитной системы

Если здание выполнено из железобетона, то при ударе молнии в молниеприемник, установленный на здании, ток молнии будет протекать по металлоконструкциям и стекать в землю через фундамент. Сечение спусков намного порядков меньше сечения металлоконструкций, поэтому большая часть тока будет протекать непосредственно по каркасу здания. Для защиты от разрушительных электродинамических воздействий, возникающих в железобетонных конструкциях при воздействии прямого удара молнии необходимо обеспечить наиболее приемлемое с точки зрения последствий, протекание токов молнии и отвод их в землю.

Варианты таких решений приведены на рисунке Γ .19 и Γ .20. Важным элементом системы является связь арматуры с заземляющим устройством (см. поз. 4 рисунка Γ .19 и поз. 7 на рисунке Γ .20) и с молниеприемником (поз. 1 на рисунке Γ .19 и поз. 3 на рисунке Γ .20).

Если металлоконструкции заложены только в фундамент здания и его кровлю, то для отвода токов при ударе молнии в здание выполняются спуски (токоотводы). Пример устройства молниезащиты с использованием 2-х спусков приведен на рисунке $\Gamma.21$. Причем спуски заземляются на внешнюю систему заземления (поз. 5, 6 рисунка $\Gamma.21$), а в качестве защитного заземления может быть использована арматура фундаментной плиты (поз. 4, 8 на рисунке $\Gamma.21$).

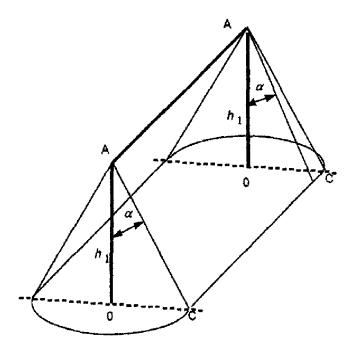
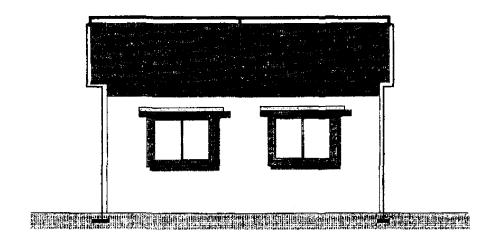
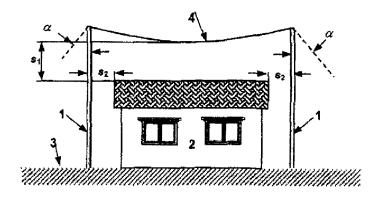
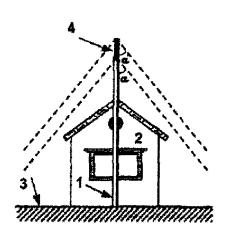
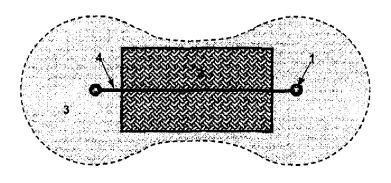


Рисунок $\Gamma.14$ - Зона защиты одиночного тросового молние
отвода


Рисунок Г.15 - Пример молниезащиты объекта с использованием горизонтального молниеприемного проводника (троса), установленного на коньке крыши. Вид сбоку

а) поперечный вид

б) продольный вид

в) вид сверху

1 — опора молниеприемника; 2 — защищаемый объект; 3 — зона защиты на уровне земли; 4 — тросовый молниеприемник; s_1 , s_2 — расстояния до объекта; α - угол защиты

Рисунок Г.16 - Схема молниезащиты объекта одиночным тросовым молниеотводом

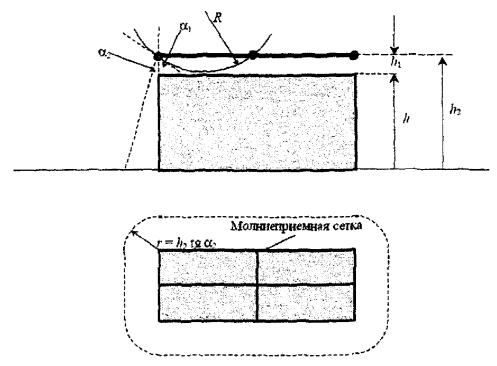


Рисунок Г.17 - Зона защиты молниеприемной сетки, установленной на высоте h: над зданием

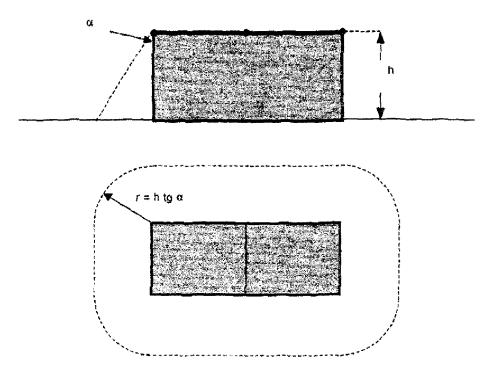
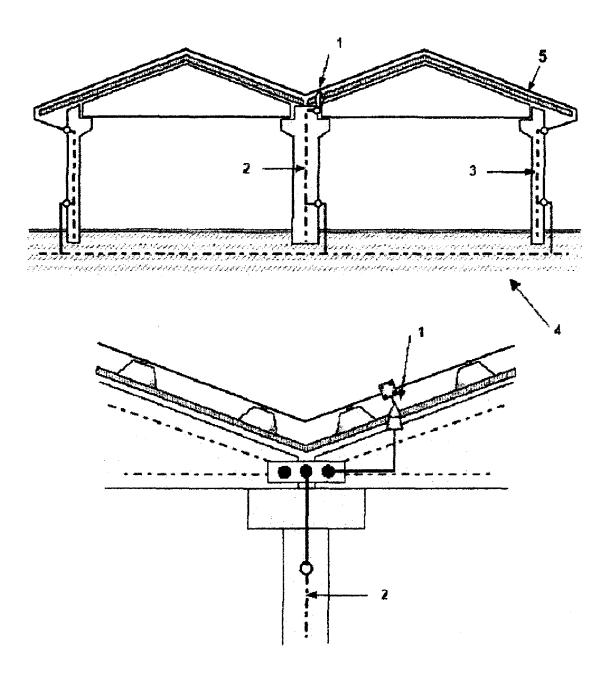
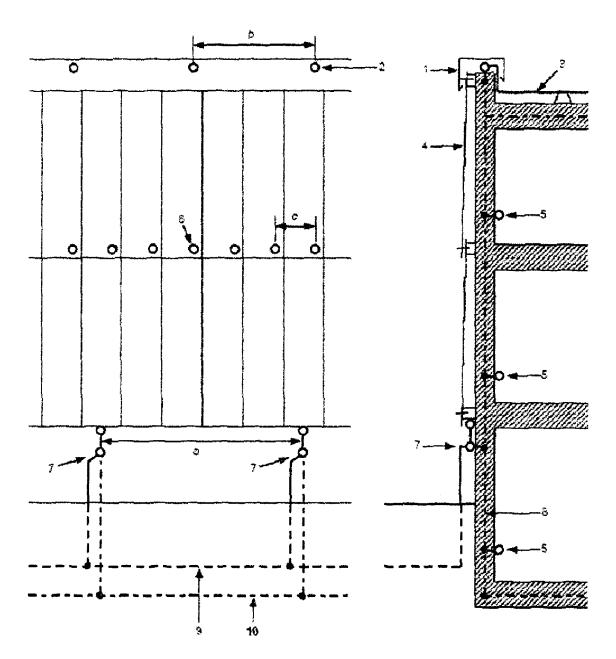




Рисунок Г.18 - Зона защиты молниеприемной сетки, установленной непосредственно на кровле здания

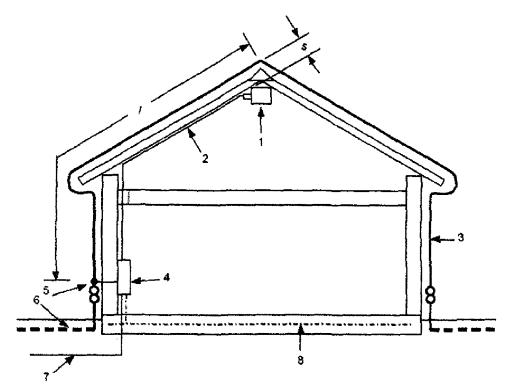

- 1 водонепроницаемый высоковольтный ввод;
- 2 стальная арматура железобетонной колонны;
- 3 стальная арматура железобетонной стены;
- 4 заземляющий электрод в фундаменте;
- 5 металлическая кровля здания

Рисунок Г.19 - Использование в молниезащитных устройствах промышленных зданий металлической кровли и арматуры железобетона

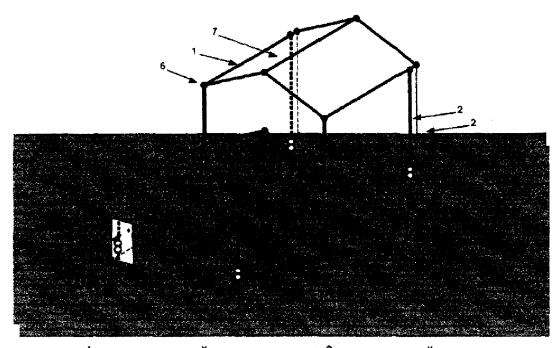
- 1 металлическое покрытие парапета крыши;
- 2 узел соединения металлических фасадных пластин с молниеприемником;
- 3 горизонтальный молниеприемник (молниеприемная сетка);
- 4 металлическая фасадная пластина;
- 5 эквипотенциальная шина внутреннего заземления;
- 6 узел соединения металлических фасадных пластин;
- 7 узел измерения сопротивления заземления;
- 8 стальная арматура железобетона;
- 9 заземление молниезащиты (защитное заземление);
- 10 заземляющий электрод в фундаменте

Рисунок Г.20 - Использование в молниезащитных устройствах промышленных зданий металлического фасада

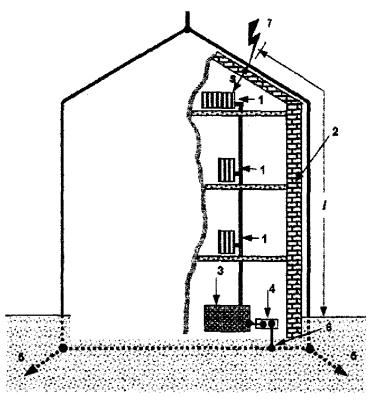
1 — электротехническое оборудование; 2 — электрический кабель; 3 — молниезащитные проводники; 4 — распределительный щит с устройством защиты вводов; 5 — узел измерения сопротивления заземления; 6 — система заземления; 7 — кабель электроснабжения; 8 — арматура фундамента

Рисунок Г.21 - Устройство молниезащиты с использованием двух молниезащитных спусков и фундамента

При различном уровне кровли здания металлическая сетка (металлическая кровля) каждого уровня соединяется между собой и отдельными спусками с системой заземления, как это показано на рисунке Г.22.


Если промышленное (общественное) здание не снабжено устройством молниезащиты, то при ударе молнии в здание может произойти перекрытие на металлические конструкции системы отопления (водоснабжения), как это показано на рисунке Г.23. Поэтому для отвода тока молнии в землю по системе отопления она должна быть обязательно соединена с заземляющим устройством (см. поз. 5.6 на рисунке Г.23).

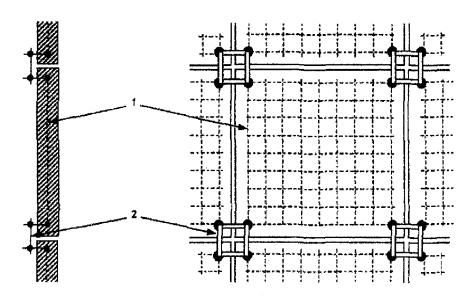
Г.4.2 Конструктивные решения узлов соединения внешней и внутренней молниезащитной системы


При протекании токов молнии по металлоконструкциям необходимо исключить искрение в местах соединения железобетонных конструкций (блоков). Примеры типовых решений по соединению железобетонных конструкций здания приведены на рисунках Г.24, Г.25.

Примеры соединения молниеприемников (заземляющих проводников) с арматурой железобетона приведены на рисунках Г.26-Г.30. Соединения, представленные на указанных рисунках исключают искрение при протекании токов молнии и обеспечивают надежный контакт между проводниками и системой заземления.

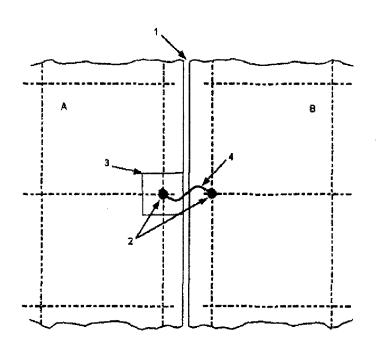
Если при устройстве внешней молниезащитной системы используется как естественные молниеприемники (например, железная кровля, металлический парапет и т.п.) так и специальные молниеприемники, устанавливаемые на здании (например, стержни или сетка), то соединение между ними выполняются так, как это показано на рисунке Г.31.

1 — горизонтальный молниеприемник; 2 — вертикальный спуск; 3 — коррозионно-стойкое соединение; 4 — узел измерения сопротивления заземления; 5 — заземляющий электрод; 6 — соединительный узел на крыше; 7 — молниеприемная сетка Рисунок Г.22 - Устройство молниезащиты для сооружения с различным уровнем крыши



1 — металлический радиатор; 2 — деревянная или кирпичная стена; 3 — котел; 4 — эквипотенциальная шина; 5 — система заземления; 6 — заземляющий проводник; 7 — точка прямого удара молнии

Рисунок Г.23 - Схема для определения минимального расстояния до точки прямого удара молнии s при ее расстоянии l до поверхности земли


Молниеприемная сетка на крыше здания может быть уложена под мягкую кровлю или бетонную стяжку. В этом случае соединения молниеприемной сетки с вертикальными стержневыми молниеприемниками выполняются так, как это показано на рисунке Г.32.

На рисунке Г.33 даны примеры выполнения узлов молниезащиты на непроводящих крышах с наклонными скатами.

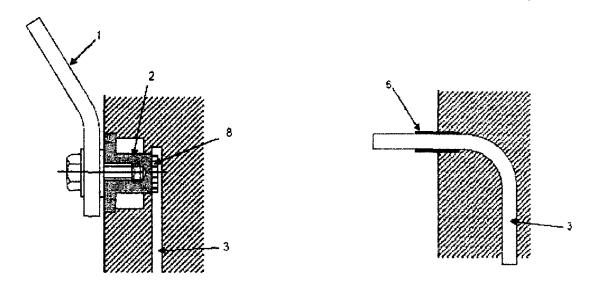
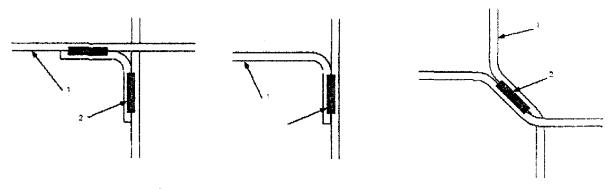

1 - железобетонный блок; 2 - соединительный проводник

Рисунок Г.24 - Соединение железобетонных блоков проводниками при помощи сварки или болтового соединения

1 – технологический зазор; 2 – приваренный или привинченный к арматуре узел; 3 – ниша; 4 – гибкий проводник; A, B –железобетонные блоки


Рисунок Г.25 - Устройство гибкой связи между двумя железобетонными блоками, разделенными технологическим зазором

1 – токоотвод; 2 – приваренная гайка;

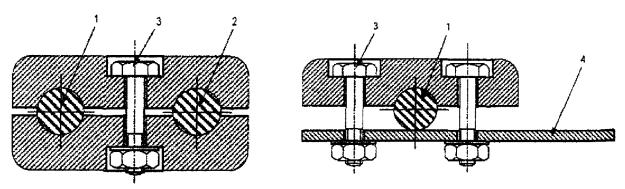
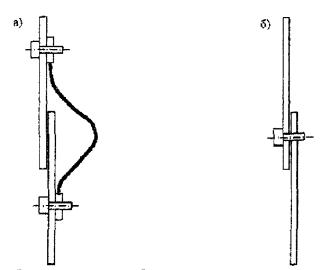

3 – стальная арматура; 4 – сварной шов; 5 – антикоррозионная вставка;

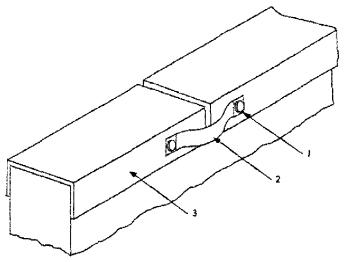
Рисунок Г.26 - Примеры соединения молниеприемников с арматурой железобетонных стен

- 1 арматурные стержни;
- 2 сварной шов длиной минимум 300 мм

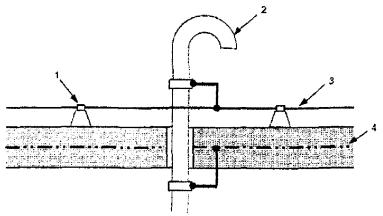
Рисунок Г.27 - Сварное соединение проводников с арматурой железобетона



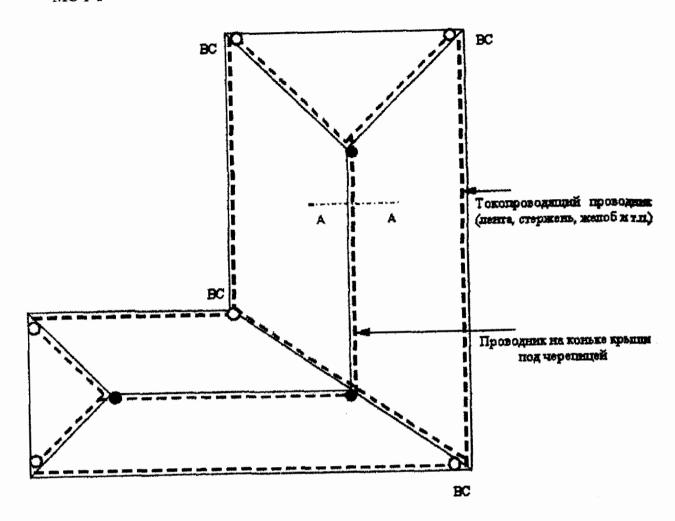
соединение элементов круглого сечения

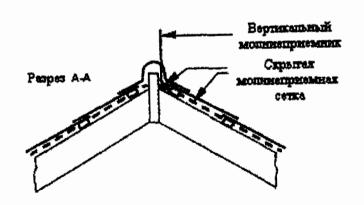

соединение арматуры с плоским элементом

1 – арматурный стержень; 2 – провод круглого сечения; 3 – болт; 4 – проводящая полоса

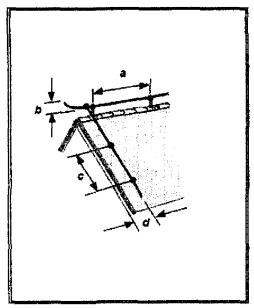

Рисунок Г.28 - Зажимы для соединения арматуры с элементами молниезащиты

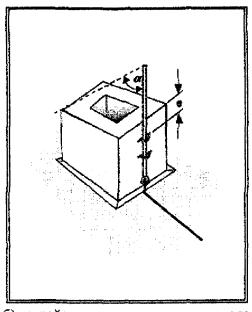
a – соединение гибким проводником; б – соединение с помощью винта или самореза Рисунок $\Gamma.29$ - Устройство соединения между металлическими сегментами фасада



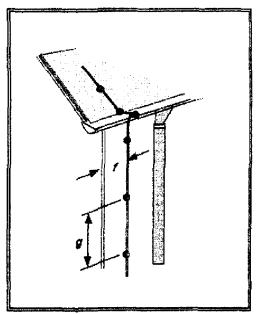

1 – коррозионно-стойкое крепление; 2 – гибкий проводник; 3 – металлическое покрытие парапета Рисунок Г.30 - Пример устройства металлического покрытия на парапете крыши

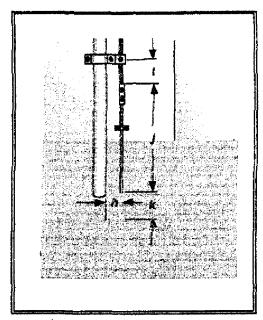
1 – крепление молниеприемного проводника; 2 – металлическая труба;
 3 – горизонтальный молниеприемный проводник; 4 – стальная арматура железобетона


Рисунок Г.31 - Соединение естественного молниеприемника со специальным молниеприемным проводником и системой уравнивания потенциалов на примере арматуры железобетона



- ---- скрытый проводник;
 - вертикальный молниеприемник;
- о ВС вертикальный спуск


Рисунок Г.32 - Устройство молниезащиты из скрытой молниеприемной сетки и дополнительных вертикальных стержней


а) устройство молниеприемного проводника на коньке крыши и вертикального спуска по скату крыши

б) устройство молниезащиты дымохода с использованием метода защитного угла

в) устройство вертикального спуска с подсоединением к желобу

г) устройство тестового узла на вертикальном спуске и соединение с водосточной трубой

Рекомендуемые размеры: a=1м; b=0,15м; c=1м; d=как можно ближе к краю; e=0,2 м; f=0,3м; g=1 м; h=0,05м; i=0,3 м; j=1,5 м; $\kappa=0,5$ м

Рисунок Г.33 - Примеры выполнения узлов молниезащиты на непроводящих крышах с наклонными скатами

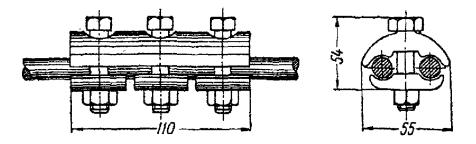
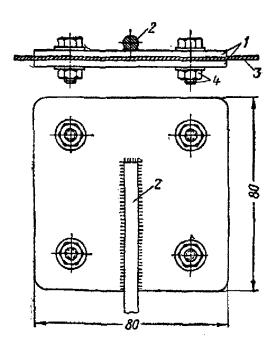
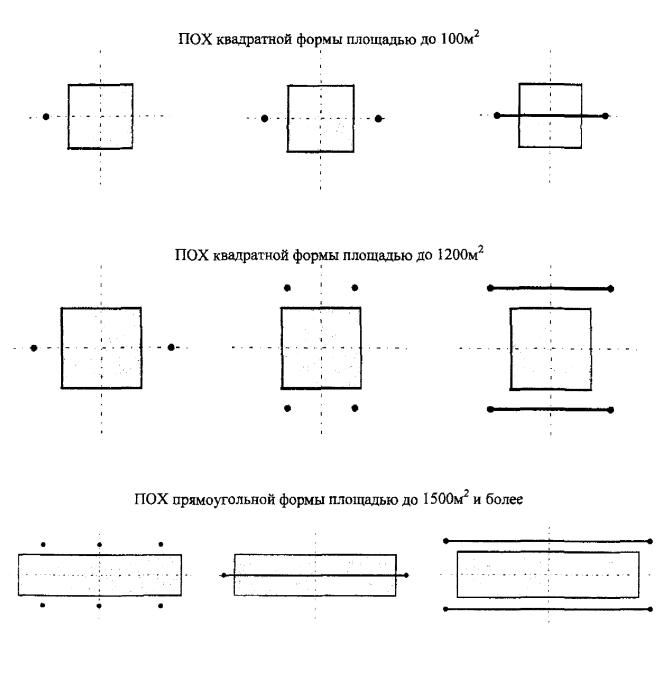
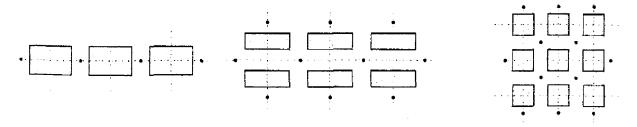




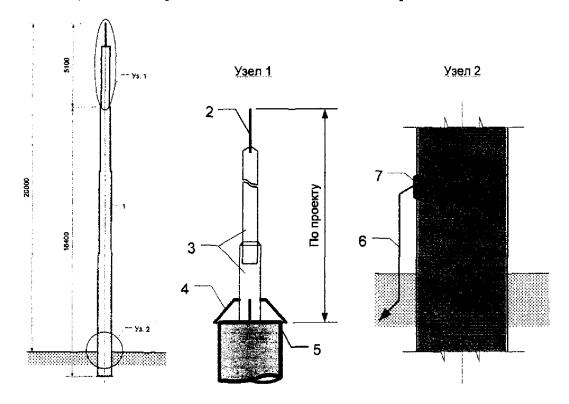
Рисунок Γ .34 — Эскиз зажима для присоединения токоотводов сечением 20-100мм²

1 – пластины из оцинкованного железа (или нержавеющей стали);
 2 – токоотвод, соединенный на сварке с верхней пластиной;
 3 – металлическая кровля;
 4 – болтовое соединение

Рисунок Г.35 — Эскиз зажима для присоединения токоотвода к металлической кровле

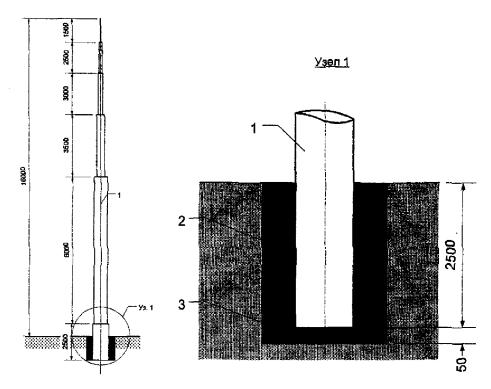
ПОХ при различной компоновке штабелей площадью до 130м² для объектов II и III категории молниезащиты




Рисунок Г.36 - Варианты размещения отдельно стоящих стержневых и тросовых молниеотводов при защите открытых площадок

Г.5 Конструктивные решения отдельно стоящих молниеотводов

Г.5.1 Стержневые отдельно стоящие молнисотводы


На рисунке Г.37 представлены конструкции из сборных железобетонных опор молниеотводов высотой 20-35м, на рисунке Г.38 конструкции опор молниеотводов выполненных из стальных труб, на железобетонных (металлических) пасынках, высотой 16-27м.

Данные о расходе материалов для одного молниеотвода приведены в таблицах Г.1 и Г.2.

1-железобетонная опора; 2-молниеприемник из круглой стали; 3-газовые трубы; 4-оголовок бетонной опоры; 5-столик из листовой стали; 6-токоотвод; 7-закладная планка, приваренная к арматуре опоры

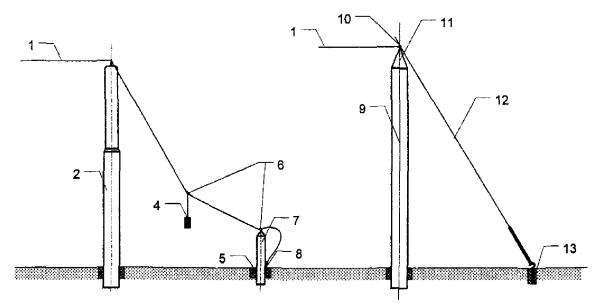
Рисунок Γ .37 Конструкция сборного железобетонного молниеотвода высотой 20-35м

1-основание молние
отвода; 2-раствор бетона; 3-металлическая плита толщиной — 8
мм

Рисунок Г.38 Конструкция сборного металлического молниеотвода на железобетонных (металлических) пасынках высотой 19–27м

ТаблицаГ.1

Наименование материала	Расчетная высота молниеотвода								
Паимонование материала	20	22	25	27	30	35			
Опора железобетонная, м	16,4	19,5	19,5	22,8	22,8	26,0			
Длина молниеприемника, м	5,1	5,5	8,5	7,4	10,7	12,5			
Трубы стальные водогазопроводные: d 32мм, кг d 50мм, кг d 80мм, кг	13,5	8,8 4,9 -	13,5 16,2	13,5 11,4	13,5 19,6 21,0	13,5 19,6 27,8			
Пруток стальной d 10мм, кг	9,4	9,4	9,4	9,4	9,4	9,4			
Прокат черных металлов: сталь угловая равнобокая 40х4мм, кг полоса 4х40мм, кг	29,1 13,9	29,1 13,9	29,1 13,9	29,1 13,9	29,1 13,9	29,1 13,9			
Сталь листовая толщиной 8мм, кг 1мм, кг	14,0 1,0	14,8 1,0	14,8 1,0	15,0 1,0	15,0 1,0	15,7 1,0			
Бетон, м куб	1,2	1,5	1,5	1,6	1,7	1,7			


ТаблицаГ.2

Изменование материа	Расчетная высота молниеотвода								
Наименование материала	16	18	20	22	25	27			
Трубы стальные водонагревательные:									
d 20мм, кг	3,5	3,5	3,5	3,5	3,5	3,5			
d 32мм, кг	10	10	10	10	10	10			
d 50мм, кг	18	18	18	18	18	18			
d 80мм, кг	52	52	52	52	52	52			
d 125мм, кг	38	76	108	91	91	91			
d 150мм, кг	-	-	18	63	81	117			
Пруток стальной d 10мм, кг	9,35	9,35	9,35	9,35	9,35	9,35			
Прокат черных металлов:									
сталь угловая равнобокая 40х4мм, кг	29,1	29,1	29,1	29,1	29,1	29,1			
полоса 4х40 мм, кг	13,9	13,9	13,9	13,9	13,9	13,9			
Сталь листовая толщиной									
8мм, кг	21,8	22,4	23	23,6	24,2	25			
1мм, кг	0,96	0,96	0,96	0,96	0,96	0,96			
Бетон, м.куб	1,125	1,27	1,27	1,43	1,47	1,57			

Г.5.2 Тросовые молниеотводы

Конструкции опор из сборного железобетона и металлических труб, высотой 13-17м, применяемые для тросовых молниеотводов, приведены на рисунке Г.39.

Данные о расходе материалов, необходимых для установки тросовых молниеотводов, приведены в таблице Γ .3

1-молниеприемник-трос; 2-металлическая опора; 3-удерживающее кольцо; 4-груз для натяжения троса; 5-ригель (4м); 6-натяжные болтовые зажимы; 7-крепежный столб; 8-глухие болтовые зажимы; 9-железобетонная опора; 10-крепежный элемент; 11-закладной оголовок опоры; 12-оттяжки; 13-анкерная плита

Рисунок Г.39 - Конструкции тросовых молниеотводов высотой 13-17м

ТаблицаГ.3

Наименование материала		Расчетная высота молнисотвода						
паименование материала	13	14	15	16	17			
Трос стальной В 9,2мм, кг	33,7	33,8	33,9	34,0	34,1			
Трубы стальные водогазопроводные: d 125мм, кг	_	-	18,0	27,0	36,0			
d 220мм, кг	252,0	294,0	294,0	294,0	294,0			
d 300мм, кг	680,0	680,0	680,0	755,0	850,0			
Пруток стальной d 10мм, кг	9,15	9,15	9,15	9,35	9,15			
Прокат черных металлов: круг d 150мм, кг сталь угловая равнобокая 40х4мм, кг полоса 4х40мм, кг	139,0 58,1 27,8	139,0 58,1 27,8	139,0 58,1 27,8	139,0 58,1 27,8	139,0 58,1 27,8			
Сталь листовая толщиной								
8мм, кг	44,8	46,0	47,2	48,4	50,0			
1мм, кг	0,96	0,96	0,96	0,96	0,96			
Метизы:								
натяжные болтовые зажимы типа НБ-2-1 (НБ-3-2), шт.	3	3	3	3	3			
поддерживающие глухие зажимы типа ПГ-2-1 (ПГ-3-1), шт.	2	2	2	2	2			
Бетон, м.куб.	2,54	2,70	2,86	3,05	3,14			

Приложение Д.1 (справочное)

Конструкции заземлителей молниеотводов и их сопротивление заземления

Заземлители молниеотводов обеспечивают растекание тока молнии в грунте. Сопротивление заземлителя определяется его конструкцией, геометрическими размерами и удельным сопротивлением грунта ρ , в котором он находится.

Для определения удельного сопротивления в конкретных условиях следует выполнять его измерение в местах установки заземлителей.

Удельные сопротивления грунтов и природной воды, приведены соответственно в таблицах Д.1.1 и Д.1.2.

Величина сопротивления заземления железобетонных конструкций определяется показателем влажности бетона. При положительных температурах и полном влагонасыщении, удельное сопротивление бетона составляет от 100 до 1000 Ом м, а сухого - от $10^8 \text{ до } 10^9 \text{ } \textit{Ом } \textit{м}$.

Искусственные заземлители выполняются из соединенных между собой вертикальных и горизонтальных металлических электродов.

В качестве естественных заземлителей следует использовать железобетонные фундаменты и другие железобетонные и металлические конструкции, в том числе ограждающие конструкции сооружений, находящихся ниже поверхности земли (обсыпные, полузаглубленные, заглубленные, подземные).

В таблице Д.1.3 даны расчетные сопротивления одиночных заземлителей (вертикальных и горизонтальных) в грунтах с удельным сопротивлением от 100 до 3000 Ом·м.

На рисунке Д.1 приведены возможные схемы комбинированных заземлителей,, обеспечивающие в грунтах с удельным сопротивлением от 100 до 750 *Ом·м* сопротивление заземлителей не более 10 Ом. Заземлители выполнены из вертикальных и горизонтальных электродов. Величины расчетных сопротивлений, расход и сортамент материалов, используемых для каждого заземлителя, приведены в таблице Д.1.4.

Наиболее распространенные типы и конструкции заземлителей, используемые для молниезащиты, приведены в таблице Д.1.5. Там же приведены расчетные зависимости для определения сопротивления заземлителей и некоторые величины сопротивлений заземлителей, рассчитанные для конкретных условий,

На рисунке Д.2 даны графические зависимости коэффициентов K_1 и K_2 от соотношения величин габаритных размеров горизонтальной сетки комбинированного сетчатого заземлителя (a/b), необходимые для определения сопротивления этого заземлителя по п.п.7 и 8 таблицы Д.1.1.

Учет снижения сопротивления за счет пробоя грунта вокруг заземлителя при стекании с него тока молнии производится импульсным коэффициентом K_H : $K_H = R_H/R_3$, где R_H -импульсное сопротивление заземлителя, R_3 -стационарное сопротивление. Значения импульсных коэффициентов некоторых видов заземлителей для грунтов с удельным сопротивлением от100 до 1000 O_{M^*M} приведены в таблице Д.1.6.

В таблице Д.1.6 также дан коэффициент использования заземлителей η_u , который учитывает взаимное экранирующее действие электродов комбинированного заземлителя. Для учета взаимного влияния близко расположенных электродов комбинированного заземлителя следует величину расчетного стационарного сопротивления заземлителя разделить на коэффициент использования η_u . Результирующее сопротивление заземлителя с учетом импульсного коэффициента и коэффициента использования рассчитывается по формуле:

$$R_3 = \frac{R_{3c} \cdot \eta_u}{K_{\mathcal{H}}}.$$

Таблина Д.1.1

Гориен породе	Средняя	Удельное электри	ческое сопротивление, Ом м
Горная порода	пористость, %	Сухое состояние	Влажное состояние
Гранит	От 0,1 до 5.0	3.1013	1,6·107
Кварцит	-	1010	4,7·10 ⁶
Диабаз	От 0,8 до 12,0	2,2.109	3.104
Базальт	От 0,6 до 19,0	1,3.107	2,3·104
Диорит	1,25	-	2,8·104
Мрамор	-	2,5.108	1,4.104
Известняк	От 1,5 до 15,0	1,2.107	4,2·10 ⁵
Песчаник	От 5 до30,0	6,4·10 ¹⁰	1,4·10 ⁷
Слюда	-	1011-1014	
Каменный уголь	-	-	340,0

Таблица Д.1.2

Наименование природных вод	Удельное сопротивление, Ом∙м
Вода в прудах	48,6
Ключевая вода	40,5
Вода в торфяной земле	От 16,7 до20,6
Вода в ручьях (известковая земля)	От 9,0 до 11,0
Вода в ручьях (глинистая земля)	От 42,0 до 51,3
Грунтовая вода	От 20,8 до 70,5

ТаблицаД.1.3

Γ	Удельное сопротивление	Сопротивление одиночных зазем- ляющих электродов, Ом			
Грунт	грунта, Ом∙м	стержни d=16мм длиной 2,5-3м	Полоса 50х4мм, длиной 5м		
Глина, чернозем	100	30	25		
Смешанный грунт(глина, известняк, щебень)	150	45	40		
Суглинок	200	60	50		
Супесок	500	150	125		
Песок	1000	300	250		
Мергель, известняк	1500	450	375		
Скалы	3000	900	750		

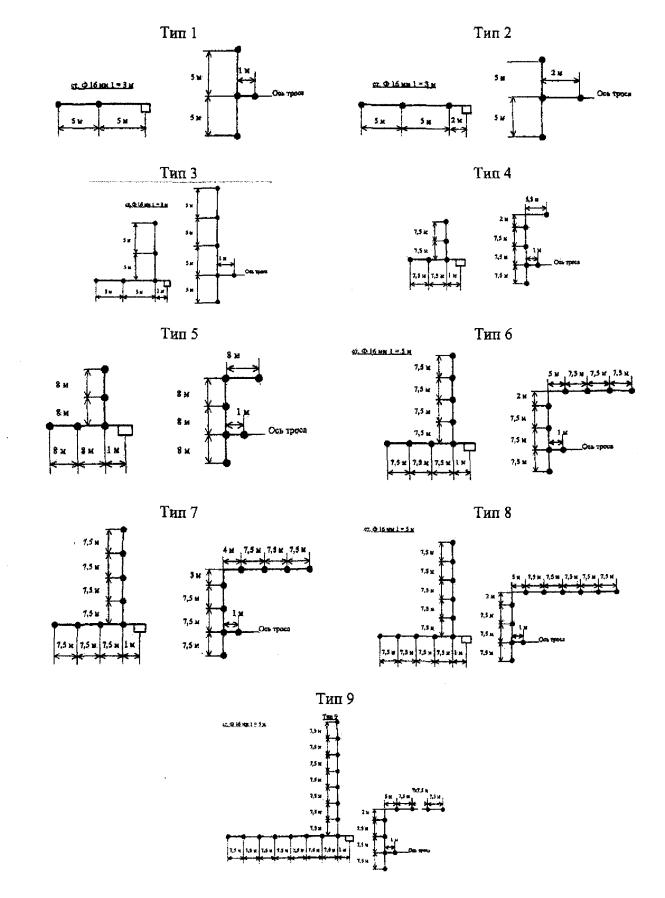


Рисунок Д.1 - Типы заземляющих устройств из вертикальных и протяженных горизонтальных электродов

Т	а	б	П	и	п	a	Д.	.1	.4
4	ш	•				•	_		

laon	ицад.1.	4										
	ò	0		<u> </u>	Pacxo	м работ на						
		101	. jo	одну опору								
52 22	M.M.	E Z	g, h	фуј кал а, м		круглая	1 4	. 4	Соптомириания			
SIL CT.		TKA TIA	XX Tell	OT. HETI	d=	16 мм	apo Ben M	про	M M	N 3G	ILEXX IIIT	Сопротивление заземляющего
Тип заземвяющего устройства	Удельное сопротивле- ние грунта р, Ом·м	Длина вертикального электрода, м	Длина протяженного заземлителя, м	Расстояние от фунда- мента до вертикально- го электрода, м	М	КT	Прокладка про- тяженных зазем- лителей, м	Забивка вергикальных электродов, ш	устройства, R ₃ , Ом			
1	100	3,0	5,0	5,0	6/9	10/15	10/11	2/3	8			
2	150	3,0	5,0	2,0	9	15	12	3	9			
3	200	3,0	8,0	1,0	15	24	21	5	8			
4	250	3,0	7,5	1,0	15	24	31	5	8			
5	300	7,5	1,0	1,0	38	63	33	5	6,5			
6	400	5,0	7,5	1,0	40	64	58	8	7			
7	500	5,0	7,5	1,0	40	64	56	8	9			
8	600	5,0	7,5	1,0	50	79	69	10	9			
9	750	5,0	7,5	1,0	75	119	106	15	7,5			

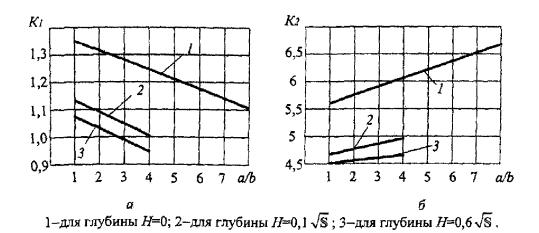


Рисунок Д.2 - Зависимости коэффициентов $K_1 = f(a/b)$ и $K_2 = f(a/b)$

ТаблицаД.1.5

Тип заземлителей	Параметры заземлителя	_	Ом разных <i>р</i>	емпителя R_3 , , Ом·м $\rho = 1000$	Расчетные формулы для определения сопротивления заземления
1. Железобетонный блок	1.1 $a \times b \times h = 1 \times 1 \times 1 \text{м};$ H = 1 м, где H - глубина заложения, h - высота блока, S-пло щадь поверхн. блока	12,2	61,1	122	Сфера в грунте $R_3 = \frac{\rho}{2\pi\sqrt{2\frac{S}{\pi}}} \cdot \left(1 + \frac{1}{4} \frac{\sqrt{2S/\pi}}{H}\right)$
h	1.2 $a \times b \times h = 2x2x0,5m;$ H = 0,75m	12,7	63,7	127	Полусфера на поверхности грунта $R_2 = \frac{\rho}{r}$
	1.3 $a \times b \times h = 2x2x1m$; H=1m	11	55	110	$R_3 = \frac{\rho}{2\pi\sqrt{\frac{S}{\pi}}}$
2. Железобетонный подножник с квадратным основанием	2.1 $a \times b \times h = 1 \times 1 \times 0,2 \text{m};$ H = 0,7 m	44	220	440	Пластина на поверхности
The state of the s	2.2 $a \times b \times h = 2x2x0,2m;$ H=0,7m	22	110	220	$R_3 = \frac{\rho}{2\sqrt{\frac{4S}{\pi}}}$
aa	$\begin{vmatrix} 2.3 \\ a \times b \times h = 3x3x0,2m; \\ H=0,7м \end{vmatrix}$	14,7	73,5	147	S-площадь поверхн. подножника
3. Стальной вертикальный электрод	3.1 d=0,05м; h=1,5м	51	255	510	При <i>h=H</i>
	3.2 d=0,05м; h=3 м	29	145	290	$R_3 = \frac{\rho}{2\pi H} \ln \frac{4H}{d};$ $npuh < H$
	3.3 d=0,05м; h=5 м	19.1	95,4	191	$R_3 = \frac{\rho}{2\pi h} \left(\ln \frac{4h}{d} + \frac{1}{2} \ln \frac{4(H - h/2) + h}{4(H - h/2) - h} \right)$

Тип заземлителей	Параметры заземлителя		иление зазем. и разных ρ	лителя <i>R</i> 3, Ом , Ом ⁻ м	Расчетные формулы для определения сопротивления
		$\rho = 100$	ρ=500	$\rho = 1000$	заземления
4. Стальной трехстержневой комбинированный	4.1 h=3 м; d=0,05м; горизонтальная полоса ℓ=5м, S=0,05х0,004м ² ; H=3,5 м.	6,4	33,3	64	Сопротивление комбинированного заземления
The H	4.2 h=5 m; d=0,05m; ℓ =5m, S=0,05x0,004m ² ; H=5,5 m.	5,56	27,8	55,6	$R_3 = \frac{1}{\sqrt{\sum_{R_{3B}} + \frac{\eta_{\Gamma}}{R_{3\Gamma}}}},$ $\Sigma R_{3B} = \frac{R_{3B1} \cdot \eta_B}{3} \Sigma R_{3B},$ $R_{3B1} = R_3 \text{ по п.5 табл.Д.1.1;}$ $R_{3\ell} = R_3 \text{ по п.5 табл.Д.1.1;}$ $\eta_B, \eta_{\Gamma} \text{-коэффициенты}$ взаимного экранирования. $\Pi \text{ ля } \ell / h = 1 \eta_B = 0,76-0,8;$ $\eta_{\Gamma} = 0,83$
5. Стальной горизонтальный электрод	5.1 ℓ =5m, S=0,05x0,004m ² ; H=0,5m.	26,3	131,7	263	$R_{3T} = \frac{\rho}{2\pi\ell} \left(1 + \frac{\ln\ell/2H}{\ln\ell/d} \right) \ln\frac{\ell}{d};$
	5.2 ℓ =10m, S=0,05x0,004m ² ; H=0,5m.	15	75	150	$d = \sqrt{\frac{4(c \times \delta)}{\pi}}, M$
	5.3 $\ell = 15 \text{M}$, S=0,05x0,004 M^2 ; H=0,5 M .	11,5	55	115	$a = \sqrt{\frac{\pi}{\pi}}$, м c , δ -ширина и толщина полосы

Продолжение таблицы Д.1.5

Тип заземлителя	Параметры заземлителя	1	противленилителя <i>R</i> $\rho = 500$ Ом·м	3, O _M ρ = 1000	Расчетные формулы для определения сопротивления заземления		
8. Сетка с вертикальными электродами по	$a \times b = 60 \times 20 \text{m};$	8.1 Compo	утивление в	Ом·м ертикальнь	их электродов		
периметру Н		1,35	6,75	13,5	$R_{3} = \frac{\rho \cdot C_{B}}{\pi \cdot \Gamma_{B}} = \frac{\rho}{\pi \cdot n \cdot l_{a}} \left[\ln \frac{8l_{a}}{d_{a}} - 1 + \frac{2K_{1} \cdot l_{a}}{\sqrt{S}} \cdot \left(\sqrt{n} - 1 \right)^{2} \right]$ $C_{B} = \frac{1}{2} \left[\ln \frac{8l_{a}}{d} - 1 + \frac{2K_{1}l_{a}}{\sqrt{S}} \left(\sqrt{n} - 1 \right)^{2} \right];$ $S = a \cdot b, \text{M}^{2}; K_{I} \text{- из рис.Д.1.a.}$		
	вергикальных	8.2 Сумм	8.2 Суммарное сопротивление сетки с вертикальными электродами по перин				
	электродов $l_s = 4$ м; количество вертикальных электродов $n=40$ шт.; диаметр вертик. электродов $d_s=24$ мм.	электродов $l_s = 4$ м; количество вертикальных электродов $n=40$ шт.; диаметр вертик.	электродов $l_s = 4$ м; количество вертикальных электродов $n=40$ шт.; диаметр вертик. электродов	1,2	6	12	$R_3 = rac{ ho}{\pi \cdot L} \cdot rac{rac{L}{n l_s} C_{I^*} \cdot C_B \cdot C_{IB}^2}{C_{IB} + rac{L}{n l_s} C_B - 2C_{IB}};$ $C_{IB} = \ln rac{4L}{l_s} + K_1 rac{L}{\sqrt{S}} - K_2 + 1;$ K_I и K_2 — из рис.Д.1.а и б.

		Co	противле	ние	
	Параметры	зазем	илителя <i>R</i>	3, Ом	Расчетные формулы для определения
Тип заземлителя	заземлителя	$\rho = 100$	$\rho = 500$	$\rho =$	сопротивления заземления
	1	Ом·м	Ом·м	1000	
	<u> </u>	<u> </u>		Ом·м	
8. Сетка с вертикальными электродами по	$a \times b = 60 \times 20 \text{m};$	8.1 Сопре	отивление в	ертикальны	іх электродов
периметру	шаг сетки 4х4м; диаметр	1 25	6.75	12.5	$R_3 = \frac{\rho \cdot C_B}{\pi \cdot \Gamma_B} = \frac{\rho}{\pi \cdot n \cdot l_e} \left[\ln \frac{8l_e}{d_e} - 1 + \frac{2K_1 \cdot l_e}{\sqrt{S}} \cdot \left(\sqrt{n} - 1 \right)^2 \right]$
A THE TANK H	стержня d _ε =12мм; глубина залож.	1,35	6,75	13,3	$R_{3} = \frac{\rho \cdot C_{B}}{\pi \cdot \Gamma_{B}} = \frac{\rho}{\pi \cdot n \cdot l_{s}} \left[\ln \frac{8l_{a}}{d_{a}} - 1 + \frac{2K_{1} \cdot l_{s}}{\sqrt{S}} \cdot \left(\sqrt{n} - 1\right)^{2} \right]$ $C_{B} = \frac{1}{2} \left[\ln \frac{8l_{a}}{d} - 1 + \frac{2K_{1}l_{s}}{\sqrt{S}} \left(\sqrt{n} - 1\right)^{2} \right];$
	H=2м; высота				$S = a \cdot b$, м ² ; K_{I} - из рис.Д.1.а.
	вертикальных	8.2 Сумм	арное сопра	тивление с	етки с вертикальными электродами по периметру
/B	электродов $l_{\sigma} = 4$ м; количество вертикальных электродов $n=40$ пт.;	1,2	6	12	$R_{3} = \frac{\rho}{\pi \cdot L} \cdot \frac{\frac{L}{nl_{\sigma}} C_{\Gamma} \cdot C_{B} \cdot C_{\Gamma B}^{2}}{C_{\Gamma B} + \frac{L}{nl_{\sigma}} C_{B} - 2C_{\Gamma B}};$
	диаметр вертик. электродов				$C_{IB} = \ln \frac{4L}{l_o} + K_1 \frac{L}{\sqrt{S}} - K_2 + 1;$ K_1 и K_2 – из рис.Д.1.а и б.
	$d_{\theta}=24$ mm.	<u> </u>	<u>l</u> _		yel week and hereafth.

Окончание таблицы Д.1.5

Тип заземлителя Параметры заземлител я		Сопротивление заземлителя R_3 , Ом $\rho = 100 \rho = 500 \rho = 100$			Расчетные формулы для определения сопротивления заземления		
9. Подземное железобетонное сооружение: прямоугольное и цилиндрическое	$axbxh_c =$ = 36x6x3,5 M. $H = 5$ M.	Ом-м	8,7	0 Ом·м 17,4	Сопротивление самозаземления сооружения $R_{obiy} = \frac{\rho}{\sqrt{\frac{S}{h_c}}}$; $\frac{S}{\sqrt{\frac{h_c}{h_c}}}$; $S = a \cdot b$; $\alpha = f(D_{\text{экв}}/h_c)$ $D_{\text{экв}} = \frac{2(b + h_c)}{\pi}$; α — из рисунка Расчетная зависимость $\alpha = f(D_{\text{экв}}/h_c)$ α 12 9 6 3 0,2 0,4 0,6 1 2 4 6 D/h		

ТаблицаД.1.6

Вид заземлителя	Значения им личном уде	Коэффициент использования			
Бид заземингели	100	200	500	1000	заземлителя η
Вертикальные стержни, соединенные полосой (расстояние между стержнями вдвое больше их длины):					
2-4 стержня	0,5	0,45	0,3		
8 стержней	0,7	0,55	0,4	0,3	0,75
15 стержней	0,8	0,7	0,55	0,4	J -5,1-
Две горизонтальные поло- сы длиной по 5м, расходя- щиеся в противоположен- ные стороны от точки при- соединения токоотвода	0,65	0,55	0,45	0,4	1
Три полосы длиной по 5м, симметрично расходящиеся от точки присоединения токоотвода	0,7	0,6	0,5	0,45	0,75

Приложение Д.2 (рекомендуемое)

Контроль системы заземления молниезащиты

Контроль системы заземления производится по следующим направлениям:

- измерение сопротивления заземлителей внешней и внутренней молниезащиты;
- проверка целостности и надежности цепей заземления внешней и внутренней молниезащиты;
- проверка коррозионного состояния конструкций заземляющих устройств, находящихся в грунте и/или агрессивных средах;
- диагностика цепей заземления.
 - Д.2.1 Измерение сопротивления заземлителей
 - Д.2.1.1 Общие требования к проведению измерений

Измерения должны выполняться в период наибольшего высыхания грунта. Сопротивление заземлителя измеряется по методу амперметра- вольтметра с помощью одного из перечисленных приборов, показанных в таблице Д.2.1.

Таблица Д.2.1

Модель, тип прибора	Цена, руб.	Основные технические характеристики			
Россия					
Ф4103-М1	3 960	Измеритель сопротивления заземления по 3-, 4-проводной схем R ₃ =0-1000 Ом: Эл. питание ~220/аккум.: на электродах не боле 36B, габариты 305х125х155мм, вес 2,6кг			
		Фирма «SEW» Тайвань			
1805ER	5 406	Измерение сопротивления заземления, шагового напряжения: R_3 =0,2-1000Ом, тест-сигнал 2мА/820Гц; $U_{\text{шаговое}}$ =1-30В/40-500Гц, стрелочный, батарейное питание, вес 1.05кг			
1820ER	5 554	Измерение сопротивления заземления, шагового напряжения R_3 =0,01-2000 Ом, тест-сигнал 2мА/820Ги; $U_{\rm шаговое}$ =1-200В/50 60Ги, цифровой, удержание показаний, батарейное питание, в 1.05кг			
6230ER	30 274	Измерение сопротивления заземления по 2 -, 3 -, 4 -проводной схеме, шагового напряжения: R_3 =0,001-20000 Ом, тест-сигнал 2, 10, 50мА/128Гц: $U_{\text{шаговое}}$ =0,01-200В/50-60Гц, цифровой, удержание показаний, фильтрация электрического шума, батарейное питание, автовыключение			
Фирма «GW Instek»					
GCT-630	46420	Установка для измерения сопротивления контура заземле 0,12-0,6 Ома, ток 3-32A, $U_{\text{макс}}$ =8B/50-60Гц; время теста 1c/10c/1мин/10мин, компенсация сопротивления заземляющий провода. допусковый контроль, ДУ, вес 21кг.			
MRU-100	-	Измеритель сопротивления заземления по 3-, 4-проводной схеме, R_3 =0-20000 Ом: Эл. питание ~220/аккум.			

Примечания

Токовый (R_{3T}) и потенциальный (R_{3T}) электроды следует располагать на одной линии по территории, свободной от линий электропередачи и подземных коммуникаций.

Точность измерения сопротивления заземлителей зависит от взаимного расположения измеряемого заземлителя и электродов, а также от расстояния между ними.

^{1.} Комплект дополнительных электродов и кабелей для связи прибора с заземлителями поставляется за отдельную плату. В комплект поставки принадлежностей к Ф4103-М1 входят 3 штыря и 4 катушки с проводом длиной по 30м.

^{2.} Измерение сопротивления заземления может производиться с помощью прибора М416, который снят с производства, но продолжает использоваться в организациях.

Если заземлитель имеет небольшие размеры и вокруг него имеется общирная площадь, свободная от линий электропередачи и подземных коммуникаций, то расстояние до электродов выбирается следующим образом:

$$L_{3T} \ge 5D;$$
 $L_{3T} = 0.5L_{3T},$

где: L_{эт}- расстояние от заземлителя до токового электрода,

 L_{30} – расстояние от заземлителя до потенциального электрода,

D- наибольший линейный размер заземлителя (для заземлителя в виде-многоугольника диагональ ЗУ, для глубинного заземлителя-длина глубинного заземлителя, для лучевого заземлителя-длина луча).

Схема расположения электродов приведена на рисунке Д.2.1.

Если заземлитель имеет большие размеры, но вокруг него нет общирной площади, свободной от линий электропередачи и подземных коммуникаций, токовый электрод следует разместить на расстоянии не меньше 3D.

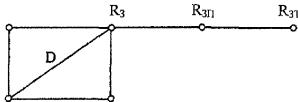


Рисунок Д.2.1 - Однолучевая схема измерений

При измерении сопротивления одиночного вертикального заземлителя или заземлителя, имеющего небольшие размеры в плане, в большинстве случаев удовлетворительные результаты могут быть получены при расположении по двухлучевой схеме при расстояниях между электродами, удовлетворяющих соотношениям:

$$L_{3n} = L_{3r} = 1.5D;$$
 $L_{7n} = D,$

где: L_{зп} - расстояние от заземлителя до потенциального электрода;

 L_{xx} – расстояние от заземлителя до токового электрода;

 $L_{\rm TR}$ – расстояние между токовым и потенциальным электродом.

Расстояние L_{3n} должно измеряться от края заземлителя и в большинстве случаев должно составлять не менее 30м.

Расположение электродов при двухлучевой схеме измерения приведены на рисунках Д.2.2a и Д.2.2б.

Относительная погрешность измерения, обусловленная уменьшением расстояния между электродами при измерениях по схемам, приведенным на рис.Д.2.2а и Д.2.2б, не превышает 5%. Направление разноса электродов нужно выбирать таким образом, чтобы электроды не оказались ближе 10м от подземных металлических конструкций (кабели, трубопроводы, заземлители опор ВЛ и т.п.). В некоторых случаях при наличии большого количества коммуникаций может потребоваться несколько измерений при различных направлениях лучей и различных расстояниях до электродов. Из нескольких измеренных значений в качестве действительного значения принимается наихудший вариант.

Для некоторых приборов указанные расстояния могут отличаться от приведенных.

При проведении измерений могут применяться неокрашенные электроды Ø12-20мм, длиной 0,8-1м с болтами и барашковыми гайками для присоединения проводов.

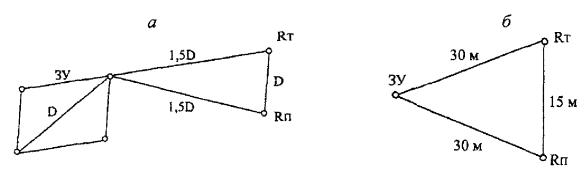


Рисунок Д.2.2 - Двухлучевые схемы измерений

Полный комплект принадлежностей для производства работ по замерам сопротивления заземлителя должен состоять из:

- 4-6 электродов, заостренных с одного конца, или со спиралью типа «буравчик», а с другого конца — с поперечными рукоятками для ввертывания в грунт и с болтами и гайкамибарашками;
- двух барабанов гибкого медного провода сечением 1,5-2,5мм² и длиной 100-120м;
- гибкого провода длиной 5-10 метров для присоединения к заземлителю;
- рулетки 10-20 метров;
- молотка или кувалды весом 2-5 кг;
- напильника для зачистки контактов.

Электроды ввертываются или забиваются в грунт (не насыпной) на глубину не менее 0,5м.

В грунтах с большим удельным сопротивлением (например, песок) места, где надо забивать измерительные заземлители, уплотняют или увлажняют водой, раствором соли или кислоты. Количество штырей в токовом электроде зависит от удельного сопротивления поверхностного слоя земли. В сухих, песчаных и мерзлых грунтах может потребоваться несколько соединенных электродов. Для устройства потенциального электрода в большинстве случаев достаточно одного штыря.

При измерении сопротивления заземления опор молниеотводов, соединенных между собой грозозащитным тросом, последний должен отсоединяться от испытываемой опоры.

Д2.1.2 Метод измерения прибором М-416

В настоящее время прибор не выпускается отечественной промышленностью, но еще находится в массовой эксплуатации.

Пределы измерения прибора M-416 от 0,1 до 1000 Ом. Предел измерения разбит на 4 диапазона: 0,1-10 Ом; 0,5-50 Ом; 2-200 Ом; 10-1000 Ом.

Основная погрешность измерения прибора сохраняется в пределах паспортных данных при сопротивлениях электродов не более:

 500 Ом в диапазоне измерений
 0,1 – 10 Ом;

 1000 Ом
 0,5 – 50 Ом;

 2500 Ом
 2 – 200 Ом;

 5000 Ом
 10 – 1000 Ом.

При сопротивлении электродов больше вышеуказанных его необходимо уменьшить путем увлажнения грунта в месте их забивки (вворачивания) или использовать вместо одного несколько соединенных между собой электродов.

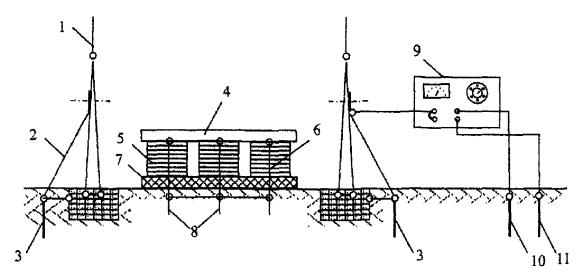
Измерение сопротивления электродов производится по двухпроводной схеме.

Измерение сопротивления заземлителей прибором может производиться как по трехпроводной схеме (измерение сопротивления более 5,0 Ом), так и по четырехпроводной.

При измерении по трехпроводной схеме между клеммами 1-2 ставят перемычку. При этом сопротивление провода от клеммы 1 до заземлителя вносит погрешность в измерения.

При измерениях по однолучевой схеме, расстояние от заземлителя до потенциального электрода должно быть не более 5D+20 м, где D — наибольшая диагональ сложного заземлителя (для простого заземлителя D=0), а от потенциального до токового электрода не менее 20м — для сложного заземлителя и 10м - для простого.

Порядок измерения следующий:


- установить переключатель в положение «Контроль 5 Ом», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора на нулевую отметку, на шкале при этом должно быть показание 5+0,3 Ом;
- собрать схему измерения;
- переключатель диапазона измерений установить в положение «×1», нажать кнопку и установить стрелку на нуль.

Если измеряемое сопротивление более 10 Ом, выбрать другой предел измерений.

Д.2.1.3 Метод измерения прибором Ф4103-М1

Измерение сопротивления заземлителей ЗУ выполняется по трехпроводной схеме (рисунок Д.2.3).

Направление разноса вторых потенциального и токового электродов выбирается так, чтобы соединительные провода не проходили вблизи металлоконструкций и параллельно трассе ЛЭП. При этом, расстояние между токовым и потенциальным проводами должно быть не менее 1м. Токовый электрод $R_{\tau 2}$ устанавливается на расстоянии $L_{\tau 3}$ =2D (предпочтительнее $L_{\tau 4}$ =3D) от края испытуемого заземлителя (D-наибольшая диагональ заземлителя), а потенциальный электрод $R_{\tau 4}$ –поочередно на расстояниях $(0,2;0,3;0,4;0,5;0,6;0,7;0,8)L_{\tau 4}$, где $L_{\tau 4}$ – расстояние от края заземлителя до токового электрода.

1-молниеприемник; 2-токоспуск; 3-искусственный заземлитель молниеотвода; 4-металлическая крыша хранилища; 5-штабели с изделиями; 6-заземляющие проводники металлической крыши; 7-диэлектрический фундамент хранилища; 8-электроды заземления объекта; 9-измерительный прибор; 10, 11-потенциальный и токовый электроды измерительного прибора

Рисунок Д.2.3 - Трехпроводная схема измерения сопротивления заземлителя

Измерение сопротивления заземлителя производится при установке потенциального электрода в каждой из указанных точек. По данным измерений строится кривая «б» зависимости сопротивления ЗУ от расстояния потенциального электрода до заземлителя. Пример такого построения приводится на рисунке Д.2.4.

Полученная кривая «б» сравнивается с кривой «а». Если кривая «б» имеет монотонный характер (такой же, как у кривой «а») и значения сопротивления 3У, измеренные при положениях потенциального электрода на расстояниях $0,4L_{3\tau}$ и $0,6L_{3\tau}$, отличаются не более чем на

10%, то места забивки выбраны правильно. За сопротивление ЗУ принимается значение, полученное при положениях потенциального электрода на расстоянии $0.5L_{\rm sr}$.

Если кривая «б» принципиально отличается от кривой «а», (не имеет монотонного характера), что может быть следствием влияния подземных или наземных металлоконструкций, то измерения необходимо повторить при расположении токового электрода в другом направлении от заземлителя.

Если значения сопротивления ЗУ, измеренные при положениях потенциального электрода на расстояниях $0.4L_{3\tau}$ и $0.6L_{3\tau}$, отличаются более чем на 10%, то следует повторить измерения ЗУ при увеличенном в 1.5-2 раза расстоянии до токового электрода.

Измерения проводятся в следующей последовательности:

- 1. Проверяется напряжение источника питания. Для этого необходимо закоротить зажимы Т1, П1, П2, Т2, установить переключатели в положение КБЛ и 0,3, а ручку КБЛ в крайнее правое положение. Нажать кнопку «ИЗМ». Если при этом лампа КП не загорается, напряжение питания в норме.
- 2. Проверяется работоспособность измерителя. Для этого в положении «КБЛ» переключателя следует установить ноль ручкой «УСТ 0», нажать кнопку «ИЗМ», ручкой «КБЛ» установить стрелку на отметку «30».
 - 3. Подключаются провода от R_{n2} и ЗУ соответственно к зажимам Π » и Π .

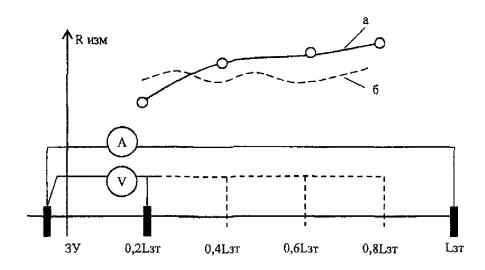


Рисунок Д.2.4 - Пример построения зависимости измеренного сопротивления заземляющего устройства от положения потенциального электрода

- 4. Проверяется уровень помех в цепи измерения. Для этого устанавливаются переключатели в положение ИЗМ и 03 и нажимается кнопка ИЗМ. Если лампа КПм не загорается, то уровень помех не превышает допустимый и измерения можно проводить. Если лампа КПм загорается, то уровень помех превышает допустимый для диапазона 0-0,3 Ом (3В) и необходимо перейти на диапазон 0-1 Ом, где допустимый уровень помех 7В. Если в этом случае лампа не загорается, можно проводить измерения на всех диапазонах (кроме 0-0,3 Ом). При кратковременном повышении уровня помех выше допустимого провести повторный контроль по истечении некоторого времени.
- 5. Измеряется сопротивление потенциального электрода по двухпроводной схеме. Для этого устанавливается диапазон измерения, ориентировочно соответствующий измеряемому сопротивлению электрода, затем устанавливается ноль и калибруется измеритель. После этого переключатель следует перевести в положение ИЗМ II и определить значение сопротивления. Если сопротивление превышает допустимое значение, указанное в таблице 1 паспорта прибора для выбранного измерения, его необходимо уменьшить одним из ранее указанных способов.

6. Подключается измеритель по четырехпроводной схеме.

Устанавливается необходимый диапазон измерений, затем производится установка нуля и калибровка. Если при проведении калибровки стрелка находится левее отметки «30», следует уменьшить сопротивление токового электрода.

Переключатель РОД РАБОТ переводится в положение ИЗМ II и отсчитывается значение сопротивления. Если стрелка под воздействием помех совершает колебательные движения, их следует устранить вращением ручки ПДСТ f.

При необходимости можно перейти на другой диапазон измерения, переключив ПРЕДЕЛЫ Ω в необходимое положение. Установить ноль и откалибровать измеритель. Затем перевести переключатель РОД РАБОТ в положение ИЗМ II и отсчитать значение сопротивления.

Измерение сопротивления точечного заземлителя проводить при $L_{\rm 3T}$ не менее 30м.

Д.2.1.4 Метод измерения прибором MRU-100

Диапазоны измерения сопротивления прибором от 0 до 20 кОм с пределами погрешности от $\pm (2\% \text{ Rx} + 3.0,01 \text{ Ом})$ до $\pm (2\% \text{ Rx} + 2.0,1 \text{ кОм})$ без использования измерительных клещей.

Диапазоны измерения сопротивления заземлителей с использованием измерительных клещей не меняются по сравнению с выше приведенным методом, а пределы погрещности измерений изменяются от $\pm (8\% \text{ Rx} + 3.0,01 \text{ Om})$ при малых сопротивлениях до $\pm (8\% \text{ Rx} + 2.0,1 \text{ кOm})$ для максимальных измеряемых сопротивлений.

Время выполнения измерения:

- сопротивления заземлителя по 3-х и 4-х проводной схеме.....<16 с;
- сопротивление заземлителя по 3-х проводной схеме с использованием клещей......<20 c;
- удельного сопротивления грунта.....<16 с.

Включение прибора осуществляется нажатием кнопки ON/OFF.

Для измерения сопротивления заземлителя по трехпроводной схеме необходимо:

- 1. Исследуемый заземлитель соединить с гнездом «Е» измерителя.
- 2. Токовый электрод вбить в грунт на расстоянии 40 м от заземлителя и соединить проводом с гнездом «Н» измерителя.
- 3. Потенциальный электрод вбить в грунт на расстоянии более 20м от заземлителя и соединить с гнездом «S». Заземлитель, токовый и потенциальный электроды должны располагаться на одной линии.
 - 4. Поворотный переключатель установить в положение RE 3p.
 - 5. Нажать кнопку START.
- 6. Снять показания сопротивления заземлителя Re, а также сопротивления измерительных электродов Rs и Rн. Остальные величины могут быть считаны с основного поля дисплея после нажатием кнопки SEL.

Если необходимо выполнить измерение без дополнительной ошибки из-за сопротивления измерительных проводов, используют четырехпроводную схему.

Для измерения сопротивления заземлителя по четырехпроводной схеме необходимо:

- 1. Исследуемый заземлитель соединить с измерительными гнездами «E» и «ES» измерителя.
- 2. Токовый электрод вбить в грунт на расстоянии более 40м от заземлителя и соединить проводом с гнездом «Н» измерителя.
- 3. Потенциальный электрод вбить в грунт на расстоянии более 20м от заземлителя и соединить с гнездом «S». Заземлитель, токовый и потенциальный электроды должны располагаться на одной линии.
 - 4. Поворотный переключатель установить в положение RE 4p.
 - 5. Нажать кнопку START.

6. Снять показания сопротивления заземлителя Re, а также сопротивления измерительных шупов Rs и Rh. Остальные величины могут быть считаны с основного поля дисплея после нажатием кнопки SEL.

Измеритель MRU-100 может быть использован для измерения параметров многоэлементных заземлителей без их разъединения. Измерительные клещи используются для определения токов, текущих через отдельные электроды. Для этого необходимо:

- 1. Исследуемый заземлитель соединить с гнездом «Е» измерителя.
- 2. Токовый электрод вбить в грунт на расстоянии более 40м от заземлителя и соединить проводом с гнездом «Н» измерителя.
- 3. Потенциальный электрод вбить в грунт на расстоянии более 20м от заземлителя и соединить с гнездом «S». Заземлитель, токовый и потенциальный электроды должны располагаться на одной линии.
- 4. Подключить измерительные клещи к разъему и охватить захватом измерительных клещей измерительный провод, подключенный к гнезду «Е».
 - 5. Поворотный переключатель установить в положение RE 3р Ω .
 - 6. Нажать кнопку START.
- 7. Снять показания сопротивления заземлителя Re, а также сопротивления измерительных щупов Rs и Rн. Остальные величины могут быть считаны с основного поля дисплея после нажатием кнопки SEL.

Во время измерений прибор может подавать следующие звуковые сигналы:

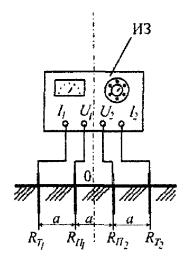
- 1. Непрерывный звуковой сигнал:
- напряжение шума превышает 40B.
 - 2. Длинный звуковой сигнал:
- после начала измерений, когда напряжение шума превыпает 24B;
- в процессе измерения обнаружен разрыв измерительной цепи;
- после того, как обнаружены другие отклонения;
- как подтверждение окончания удаления результатов измерений из памяти;
- после нажатия любой кнопки, которая в фактическом состоянии прибора не может использоваться;
- как сигнал срабатывания AUTO-OFF.
 - 3. Короткий звуковой сигнал:
- подтверждает нажатие клавиши. Подается всегда, когда прибор может выполнить операцию.
 - 4. Два коротких акустических сигнала:
- после успешного окончания цикла измерения.

Прибор отключается нажатием кнопки ON/OFF или автоматически, если не используется в течение 2 мин.

Д.2.1.5 Измерение удельного сопротивления грунта

Измерение удельного сопротивления грунта проводится, когда измеренное сопротивление заземлителя больше проектного значения или не соответствует нормативным требованиям.

В этом случае проверяется допустимая степень этого несоответствия при повышенных удельных сопротивлениях грунта.


Измерения проводятся по методу «вертикального зондирования с помощью приборов Ф4103-M1, MRU-100 и др.

Удельное сопротивление грунта определяется по формуле:

 ρ =2πaR, Oм·м,

где R-измеренное сопротивление;

а-расстояние между электродами, которое следует принимать не менее, чем в5 раз больше глубины погружения электродов.

ИЗ – измерительный прибор; R_{TI} , R_{T2} – токовые электроды; R_{RI} , R_{R2} – потенциальные электроды

Рисунок Д.2.5 - Метод измерения прибором М416

Для измерения удельного сопротивления грунта необходимо забить в землю по прямой линии четыре электрода (см. рисунокД.2.5) на расстоянии «а» друг от друга, глубина забивки не должна превышать 1/20 расстояния «а». Зажимы 1и 4 прибора следует подсоединить к крайним электродам, а 2 и 3 — к средним. Перемычку между зажимами 1 и 2 необходимо снять и затем произвести измерение.

Удельное сопротивление определяется по выше приведенной формуле.

Д.2.1.7 Метод измерения прибором MRU-100

Диапазоны измерения удельного сопротивления грунта прибором MRU-100 от 0 до 999 кОм·м и пределы погрешности измерений от $\pm (5\% \text{ p} + 3.0,01 \text{ Oм·м})$ до $\pm (5\% \text{ p} + 2.0,1 \text{ кОм·м})$.

Для измерения удельного сопротивления грунта необходимо:

- 1. Забить электроды в грунт по прямой линии через равные расстояния и соединить с гнездами «Н», «S», «ES», «E».
 - 2. Установить поворотный переключатель в положение «р».
 - 3. Нажать кнопку «\$TART».
- 4. Используя клавиши управления стрелками, изменить величину расстояния между электродами так, чтобы оно лучше всего согласовывалось с фактическим расстоянием.
 - 5. Нажать кнопку «START».
- 6. Снять показания удельного сопротивления грунта. Остальные величины могут быть считаны с основного поля дисплея после нажатия кнопки SEL.
 - Д.2.1.8 Оформление результатов измерения

Результаты измерений сопротивлений заземлителей заносят в протокол, приведенный в приложении Д.3.4.

- Д.2.2 Проверка непрерывности цепей между заземлителями и заземляемыми объектами
- Д.2.2.1 Непрерывность цепи заземления внешней молниезащиты должна быть проверена от молниеприемника до заземлителя. В такой цепи контакт может быть нарушен как минимум на двух участках в местах соединения молниеприемника с токоспусками и токоспусков с заземлителем.

Проверка может быть выполнена следующими способами:

- визуально, прощупыванием, простукиванием, потряхиванием мест соединения участков цепи с целью обнаружения разрыва контактных соединений. Такой способ возможен, если имеется свободный доступ к местам контактов;
- измерениями методом амперметра-вольтметра или омметром, имеющим шкалу делений 0,1-0,01 Ома, участков до места подключения токоспусков к молниеприемнику и после места подключения их к заземлителю. Сопротивление участка не должно превышать

0,05Ома. Измерения следует произвести после сборки схемы контроля, затем простучать по метаплоконструкциям молниеотвода кувалдой или молотком и снова замерить сопротивление;

совмещением измерений сопротивления заземлителя с проверкой непрерывности цепи заземления. В этом случае для удобства проведения контроля непрерывности цепи и измерения сопротивлений следует проложить медный изолированный провод сечением 2,5÷4мм² по опоре молниеотвода от точки, расположенной выше контактного соединения токоприемника и токоспуска, до места подсоединения токоспуска к электроду заземления молниеотвода. Контакт медного провода с молниеприемником должен быть выполнен либо сваркой, либо болтовым соединением с переходным сопротивлением не более 0,05 Ома.

Контакт после подсоединения и надежного обжатия должен быть защищен от окисления, т.е. покрыт защитным лаком или крышкой (козырьком, защищающим от осадков).

Второй конец измерительного провода должен быть присоединен к заземлителю болтовым соединением. При проведении контрольных замеров этот конец следует отсоединить от заземлителя и подключить к измерительному прибору на клеммы первого электрода. Если в контактных соединениях молниезащитного устройства имеются нарушения, то прибор зафиксирует разрыв цепи измерения.

 2.2.2 Непрерывность цепи заземления внутри сооружения может быть установлена органопептическими методами, если все ее участки проложены стальными и/или медными шинами по стенам сооружения от заземлителя и введены специальными вводными шинами. Для этого следует пройти вдоль трассы заземления, визуально и прощупыванием убедиться в целостности цепи.

Если в качестве трасс заземления используются их эквиваленты, представляющие собой металлоконструкции обделки, кабельные каналы, эстакады, монорельсы и т.д., то целостность цепей заземления проверяется инструментальными методами.

В качестве измерительного прибора может быть использован любой омметр или один из приборов, показанных в п.1.2. При этом при проверке цепей заземления внутри сооружения все металлопокровы кабельных линий должны быть отсоединены от корпусов потребителей, источников питания и заземления и изолированы от контакта с элементами заземления.

Контроль непрерывности цепей заземления внешней и внутренней молниезащиты рекомендуется выполнять с использованием источника питания, имеющего напряжение холостого хода от4 до24В постоянного или переменного тока при рабочем токе не менее 0,2А. Этим требованиям отвечают следующие приборы:

- измеритель сопротивления заземления Ф4103-M1;
- микроомметр Ф4104;
- измеритель MIC-3.

Д.2.2.3 Метод измерения прибором Ф4103-М1

Для испытания непрерывности проводников и измерения переходных сопротивлений контактов необходимо установить измеритель на ровной поверхности и подключить по четы-рехпроводной схеме. Установить необходимый диапазон измерений, затем провести установку нуля и калибровку. Перевести переключатель «род работ» в положение «ИЗМ II» и отсчитать значение сопротивления. Если стрелка под воздействием помех совершает колебательные движения, устранить их вращением ручки ПДСТ f.

Д.2.2.4 Метод измерения прибором MIC-3

Подключить измерительные провода к гнездам «СОМ» и «U,R,E».Включить прибор. Установить поворотный переключатель функций в положение $R_{\text{cont}200}$ мА. Перед началом измерений (а также после выключения и при повторном включении измерителя) следует соединить наконечники измерительных проводов друг с другом и нажатием клавищи R_{cont} обнулить показания прибора. Измерение запускается после присоединения проводов к объекту измерения. Последующее измерение запускается после отсоединения и повторного подключения одного из измерительных приборов, либо нажатием кнопки «START». В обоих случаях запуск

нового измерения сигнализируется отображением горизонтальных черточек на дополнительном экране дисплея.

Наличие на зажимах измерителя напряжения, исходящего от испытуемого объекта, делает измерение невозможным и отображается надписью «UdEt». Отображение символа «[on» свидетельствует о величине тока более 200мА.

Д.2.2.5 Оформление результатов измерения

Результаты измерения оформляются протоколом, форма которого приведена в приложении Д.З.4. Эти измерения совмещаются с измерениями сопротивления самого заземлителя.

Д.2.3 Проверка коррозионного состоянии заземлителей

Механическая прочность узлов и линий заземляющих устройств сооружений в режиме повседневного функционирования определяется требованиями выбора сечений заземлителей, магистралей, шин и проводников, рекомендованных ПУЭ и другими нормативными документами.

Определение сечений заземлителей с учетом коррозионных процессов производится следующим образом.

Минимально допустимое сечение определяется:

$$S_{min} = S + S_k$$

где S - сечение, выбранное по механической прочности, мм²;

 S_k - уменьшение сечения проводника в процессе коррозии за расчетный срок службы заземлителя, мм 2 .

Уменьшение площади для круглых заземлителей:

$$S_k = 3.14 \delta_{cp} (d + 2\delta_{cp}),$$

где δ_{cp} - средняя глубина коррозии по сечению заземлителя, мм;

d - диаметр, выбранный по механической и термической устойчивости, мм.

Средняя глубина коррозии определяется в виде:

$$\delta_{cp} = \alpha_3 (\ln T)^3 + \alpha_2 (\ln T)^2 + \alpha_1 \ln T + \alpha_0,$$

где Т - расчетный срок службы заземлителя, мес.;

 α_0 - α_3 - коэффициенты, зависящие от агрессивности грунтовых условий по отношению к стали (таблица Д.2.2).

Расчетный срок службы заземлителя принимается равным 20 годам. (Металлоконструкции железобетонных сооружений сохраняются гораздо дольше).

Таблипа Л.2.2

Коррозионная	Коэффициент уравнения								
активность	a ₃	α_2	α_1	αο					
Весьма высокая	0,0118	0,035	- 0,0618	0,148					
Высокая	0,0056	0,022	-0,0107	0,0403					
Повыщенная	0,0050	0,0081	-0,0410	0,243					
Средняя	0,0026	0,00915	-0,0104	0,0224					
Низкая	0,0013	0,003	-0,0068	0,044					

Вид коррозионной активности грунта по отношению к стали ориентировочно может определяться через удельное сопротивление грунта, влияющего на скорость коррозии металла в соответствии с приведенными ниже данными:

Коррозионная активность грунта	Удельное сопротивление грунта, Ом м
Весьма высокая	до 5
Высокая	5 - 10
Повышенная	
Средняя	20 - 100
Низкая	

Для сложных заземлителей за расчетный принимается один из вертикальных или горизонтальный элемент.

Если по результатам расчета часть площади сечения, пораженного коррозией, оказывается близкой к 20% от общей площади сечения электрода, то обязательно должно быть произведено вскрытие заземлителя для принятия решения о допустимости его использования.

Д.2.4 Диагностика цепей заземления

Д.2.4.1 Измерительный комплекс для диагностики качества контуров заземления КДЗ-1 (НПФ ЭЛНАП, МЭИ, г. Москва)

В тех случаях, когда на объекте отсутствует проектная и эксплуатационная документация и не известны трассы прокладки заземляющего устройства, определение местоположения цепей ЗУ объекта может быть выполнено с помощью измерительного комплекса КДЗ-1.

Комплекс предназначен для проведения электромагнитной диагностики заземляющих устройств. Принцип действия заключается в том, что после подключения напряжения переменного тока (200-400Гц) к двум известным точкам ЗУ и протекании тока по трассам ЗУ измеряется магнитное поле над участками трассы и отмечаются места проложенных цепей заземления.

В состав комплекса входят источник переменного синусоидального тока (ИПТ) и измеритель напряженности магнитного поля (ИПМ). Общий вид комплекса показан на рисунке Д.2.6, источник переменного синусоидального тока — на рисунке Д.2.7.

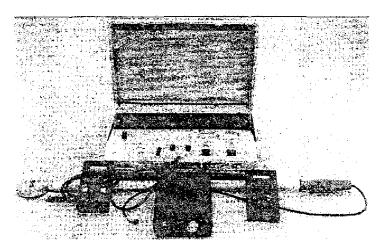


Рисунок Д.2.6 - Измерительный комплекс КДЗ-1

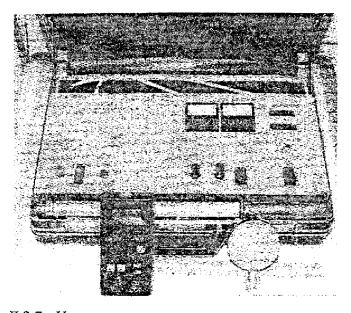


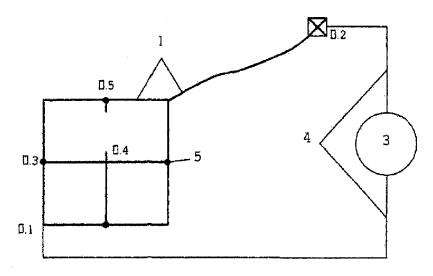
Рисунок Д.2.7 - Источник переменного синусоидального тока ИПТ

Источник переменного синусоидального тока ИПТ предназначен для нагрузки систем заземления переменным током с частотой 200 и 400 Гц с целью диагностики ЗУ.

Технические характеристики ИПТ:

Напряжение питания	220 B, 50 Γц; =27 B
Потребляемая мощность	Не более 300 Вт
Выходное напряжение	12 В, 400 (200) Гц
Выходной ток	0÷10 A, 400 (200) Γπ

Измеритель напряженности магнитного поля малогабаритный ИПМ-203М с антенной-преобразователем Н05 предназначен для измерения напряженности переменного магнитного поля и переменного напряжения частотой 50, 200 и 400 Гц.


Технические характеристики ИПМ-203М:

Рабочий диапазон частот	400, 200, 50 Гц
Пределы измерения напряженности магнитного поля	1 MA/M2000 A/M
Рабочие условия эксплуатации:	
 температура окружающей среды 	-10+40 °C
 рабочие частоты вольтметра 	400, 200, 50 Гц
Пределы измерения переменного напряжения	0,01 мВ200 В

Д.2.4.2 Определение реальной схемы заземляющего устройства

Работы по определению трассы прокладки заземляющих электродов и горизонтальных связей заземлителя в грунте с использованием комплекса КДЗ-1 рекомендуется проводить в следующей последовательности:

- Определяется часть территории хранилища, на которой будут проводиться измерения. Пример приведен на рисунок Д.2.8. Показанные магистрали заземления должны быть выявлены в ходе измерений.
- С помощью соединительных проводов ИПТ подключается к двум точкам ЗУ, например к корпусу молниеотвода и к магистрали заземления (точки 1, 2 на рисунке Д.2.8).
- Включается ИПТ, регулятором устанавливается ток, обеспечивающий магнитное поле на измерительных проводах с напряженностью, превышающей фоновую как минимум в 10 раз.
- Начиная от точки 1, находится направление на поверхности грунта с наибольшим значением напряженности магнитного поля, соответствующее реальному направлению прокладки заземлителя. На рисунке первый участок заземлителя соответствует отрезку между точками 1 и 3, второй отрезку между точками 3 и 4 и так далее до точки 2.
- В местах ответвлений искусственного заземлителя повторяются измерения и определяются остальные магистрали заземлителя, связывающие точки 1, 2.
- Постепенным переходом от одного узла ЗУ к другому составляется трасса прокладки горизонтального заземлителя и заземляющего проводника в грунте на исследуемом участке. Для перехода к другому участку (следующему молниеотводу) необходимо произвести соответствующее переключение ИПТ.
- Обрыв магистрали выявляется следующим образом: если магистраль заземления имеет обрыв (например, между точками 4 и 5), при перемещении от т.4 к т.5 показания ИПМ будут на уровне фона, поскольку ток по отрезку между точками 4 и 5 не протекает.
- Места установки вертикальных электродов определяются по увеличению уровня напряженности магнитного поля по сравнению с его значениями на линейных участках.
- Выборочно определяется глубина прокладки горизонтального заземлителя (не менее чем через каждые 3...5 метров).
- На основании полного обследования территории объекта составляется истинная схема прокладки магистралей заземления с указанием возможных мест обрыва.

1 — магистраль заземления; 2 — молниеотвод; 3 — ИПТ; 4 — измерительные провода; 5 — вертикальный электрод Рисунок Д.2.8 - Схема прокладки магистралей ЗУ

- Определяется наличие связей между оборудованием объекта и заземляющим устройством. Например, для проверки отсутствия связи распределительного щита и заземляющего устройства молниеотвода источник ИПТ подключается между проводником, заземляющим корпус щита, и точкой заземляющего устройства. Включается ИПТ и определяется напряженность магнитного поля на соединительном проводе. С помощью ИПМ определяется доля суммарного магнитного поля от токов, протекающих в искусственный заземлитель, по оболочкам силовых и контрольных кабелей, по трубам и другим металлоконструкциям.
- На основе измерений по п.9 и п.10 составляется схема ЗУ, включающая в себя магистрали искусственного заземлителя, кабельные каналы и другие металлоконструкции, имеющие связи с заземляющими устройствами молниеотводов.
- При наличии связи электротехнического оборудования объекта с заземляющими устройствами молниеотводов определяется сопротивление связи.

Приложение Д.3 (обязательное)

Эксплуатационно-техническая документация системы молниезащиты

Настоящее приложение содержит образцы эксплуатационно-технической документации, рекомендуемой для оформления результатов контроля и обследования состояния устройств молниезащиты и их составных элементов, и включает формуляры документов, приведенные ниже.

Приложение Д.3.1 Акт приемки в эксплуатацию молниезащитной системы

Приложение Д.3.2 Акт приемки заземлителей в эксплуатацию

Приложение Д.3.3 Протокол измерения сопротивления заземлителей

Приложение Д.3.4 Паспорт молниезащитной системы объекта

Приложение Д.3.5 Паспорт заземлителей молниезащитной системы объекта

Приложение Д.3.6 Акт проверки состояния молниезащитной системы

Приложение Д.3.7 Журнал учета состояния молниезащитной системы

Приложение Д.3.8 Типовая форма Приказа командира воинской части

МУ			3	Заказчик				
Участ	ок		(Объект				
			Į	Įата			 	
				A K T №				
		приемки	в эксплуа	тацию молн	иезащитн	ой систем	ты	
Комис	ссия в состав	е: от монта	жной орга	низации				
			(должнос	ть, фамилия, им	ия, отчество)			
от Зак	азчика	· · · · · · · · · · · · · · · · · · ·						
			(должнос	ть, фамилия, их	ия, отчество)			
	Π							
характ	проведенны перистики М		имкиньво	и выполнени	ными изме	рениями	получены тех	нически
	· · · · · · · · · · · · · · · · · · ·		F*25.					
№ m/n	Наимено- вание	Тип молние-	Номер молние-	молние-	токоот-	мачты	Сопротив- ление	При- меча-
11/11	здания,	отвода	отвода	приемника	вода	Manibi	заземления	ние
	сооруже-							!
	- RNH					·		ļ
							į	ĺ
							ļ	
Прило	жения: 1. Ан	т осмотра з	аземлител	я перед закрі	ытием;		1	ı
	2. Пр	отокол изм	ерения со	противления	растекани	ю тока.		
	«C	СДАЛИ»				«ПРИ	няли»	
Пред	дставители м	онтажной (организаци	и	П	редставит	ели Заказчика	
	(Фами	лии, подписи)			(Фамили	и, подписи)	
	(Фами	лии, подписи)			(Фамили	и, подписи)	<u></u>
	(Фами	лии, подписи	`		Пеото	TODIETO TIE		mař.
	(V AMM	лин, подписи	,		предс		эксплуатирую изации	щеи
						(Фамили	и, подписи)	
						(Фамили	и, подписи)	

Участок Объект	МУ			Заказч	тик	···		
АКТ №	Участок			Объек	TT			
Приемки заземлителей в эксплуатации (должность, фамилия, имя, отчество) от Заказчика (должность, фамилия, имя, отчество) Осмотром установлено: 1. Заземление выполнено по чертежам № проекта электрооборудования (молниезащиты зданий и сооружений), разработанного 2. Отступления от проекта согласованны с и внесены в чертежи № 3. Все соединения выполнены 4. Характеристика заземлителей: Наименование участка Матери- заземленование участка и дапита стыков) Профиль Размеры, Количенования и запита стыков примения и запита стыков примения и запита стыков применование участка матери- заземленование участка и дапита стыков примения и запита стыков примения и запита стыков от плановой от планово				Дат	a			
Приемки заземлителей в эксплуатации (должность, фамилия, имя, отчество) от Заказчика (должность, фамилия, имя, отчество) Осмотром установлено: 1. Заземление выполнено по чертежам № проекта электрооборудования (молниезащиты зданий и сооружений), разработанного 2. Отступления от проекта согласованны с и внесены в чертежи № 3. Все соединения выполнены 4. Характеристика заземлителей: Наименование участка Матери- заземленование участка и дапита стыков) Профиль Размеры, Количенования и запита стыков примения и запита стыков примения и запита стыков применование участка матери- заземленование участка и дапита стыков примения и запита стыков примения и запита стыков от плановой от планово				AKT N	<u>0</u>			
от Заказчика			приемки			луатацию		
от Заказчика								
Осмотром установлено: 1. Заземление выполнено по чертежам № проекта электрооборудования (молниезащиты зданий и сооружений), разработанного 2. Отступления от проекта согласованны с и внесены в чертежи № 3. Все соединения выполнены 4. Характеристика заземлителей: Наиме	Комиссия в с	оставе: от м	онтажной о	рганизации	I	· - · · · · · · · · · · · · · · · · · ·		
1. Заземление выполнено по чертежам № проекта электрооборудования (молниезащиты зданий и сооружений), разработанного			(должность, фами	лия, имя, отчест	во)		
1. Заземление выполнено по чертежам № проекта электрооборудования (молниезащиты зданий и сооружений), разработанного	от Заказчика							
1. Заземление выполнено по чертежам № проекта электрооборудования (молниезащиты зданий и сооружений), разработанного	Осмот	now versue	рле ч о:	должность, фами	лия, имя, отчест	во)		
2. Отступления от проекта 2. Отступления от проекта 2. Отступления от проекта 3. Все соединения выполнены 4. Характеристика заземлителей: Наименование участка материзаземлены ми размеры, количенования и запита стыков от плановой отметки, м м м ство от плановой отметки, м м м ство от плановой отметки, м 3аключение комиссии:		•		кам №	проект	а электрообору	удования (1	молниезащи-
огласованны с	ты зданий и с	сооружений	і), разработа	инного				
огласованны с				······································		<u>_</u>	<u>.</u> .	
3. Все соединения выполнены 4. Характеристика заземлителей: Наиме- нование участка заземле- ал ния Профиль ния на профиль на профи	2. Отступлен							 -
3. Все соединения выполнены 4. Характеристика заземлителей: Наиме- нование участка заземле- ал ния Профиль ния Профиль ния Наиментры заземленте Профиль ния Наиментры заземлителей Профиль ния Наиментры заземлителей Профиль ния Наиментры заземлителей Примента заложения от плановой от плановой отметки, м Наиментры заземление комиссии:	согласованнь							_
4. Характеристика заземлителей: Наиме-								
4. Характеристика заземлителей: Наиме-	3. Все соедин	ения выпол	інены	·	(спосс	б соединения и запит	га стыков)	
нование участка заземления Матери- профиль им Ство от плановой отметки, м Примечание Заключение комиссии:	4. Характери	стика зазем	лителей:		`		····-,	
нование участка заземления Матери- профиль им Ство от плановой отметки, м Примечание Заключение комиссии:	Наиме-		Парал	иетры зазем	лителей			
участка Матери- заземле- ния Профиль Размеры, Количе- заложения чертежа чание Трофиль Размеры, Количе- от плановой от метки, м	нование					Глубина	No	Приме-
ния мм ство от плановои отметки, м Заключение комиссии:			Профиль	Размеры,	Į.	t .	1	-
Заключение комиссии:		ал		MM	ство		•	
		L	<u> </u>	<u> </u>		OTMOTRM, M	<u></u>	
1. Выполненные заземлители могут быть закрыты.								
			тели могут	быть закры	ты.			
2. Качество работ	2. Качество р	аоот	 .					
Представители Представители	Представител	ш			Представ	ители		
монтажной организации заказчика	монтажной о	рганизации			заказчик	a		
(фамилия, подпись)	(фами	лия, подпись)				(фамилия	, подлись)	
Представители					Прапотари	тепи		
эксплуатирующей организации					-		изации	
(фамилия, подпись)						(фамилия, подпис		

Протокол измерения сопротивления заземлителей

		ПР	отокол	I N ₂		
					łt 71	200r
Заказчик		Монт	ажная ор	ганизация	······································	-
Объект		Зазем	іление			*****
Измерение:	проводилось	прибором		типа		 -
Заводской Л	٧٥					
1. Общие св	ведения					
Характер грунта			Состояние погоды			тура в день
		в последние 3 дня		в день измерени	я изме	рения, ⁰С
		сухая/сырая		сухая/сырая		
1		1		l	r	'
2. Результат	гы измерения					
№ п/п	Место и	змерения	Сопр	отивление, Ом	Заклю	очение
представит монтажной	ели организации		•	Представители заказчика		I
(фал	имлия, подпись)			(фамилия, подпись)	
				Представители	_	
				эксплуатирующей	организации	
				((фамилия, подпись)	

ПРИЛОЖЕНИЕ Д.3.4

ПАСПОРТ МОЛНИЕЗАЩИТНОЙ СИСТЕМЫ ОБЪЕКТА

(наименование защищаемого сооружения)

І. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

	ІКТЫ		вий молник	Строительная характеристика сооружения			Геометриче-	ские размеры	сооружения,	Ом·м	Расстояние, м	от молниеотво- дов/заземлителей	ения заземления,	II	ДОВ	8	
№ сооружения по генплану	Категория устройства молниезащиты	Гип зоны защиты	вторичных воздейст		дова-	8	на	Выс	сота	Удельное сопротивление грунта, Ом·м	Pacc	ОТ МС ДОВ/3а	еряемого сопротивл Ом	Количество молниеотводов, шт	Порядковый номер молниеотводов	Год установки молниеотводов	Высота молниеотводов
N⁵ cooy§	Категория ус	Tu	Наличие защиты от вторичных воздействий молнии	Материал пола, стен, крыши	Наличие инженерного оборудова- ния	Длина	Ширина	до конька	до карниза	Удельное соп	До сооружения	До коммуникации	Предельная величина измеряемого сопротивления заземпения, Ом	Количест	Порядковы	Год устав	Высо

ІІ. РЕЗУЛЬТАТЫ ОСМОТРОВ И ИЗМЕРЕНИЙ СОПРОТИВЛЕНИЯ

(Выписка из журнала учета состояния молниезащитных устройств)

Дата проверки	Порядковый номер молние- отвода	Молниеприсмников	Токоотводов	Опор молниеотводов	Конструктивных элементов защиты от вторичных воздействий молнии	Измеренное сопротивление заземления R ₃ (Ом)	Обнаруженные недостатки	Дата и подпись ответствен- ного лица об устранения не- достатков и принятых мерах
Тех	(эихээрин	данные сос	ставлены	« »		_200 r.		

(должность и подпись ответственного лица)

ПАСПОРТ ЗАЗЕМЛИТЕЛЕЙ МОЛНИЕЗАЩИТНОЙ СИСТЕМЫ ОБЪЕКТА

			(наименова	ние объекта)					
	Дата возведения молниезащитной системы200 г.								
	1. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ								
-	№ заземлителя	Конструкция заземлителя	Удельное сопротивле-		ие растеканию, Эм	Способ измерения			
	(контура)	(№ чертежа), размеры	ние грунта, Ом·м	расчетное R _{доп}	измеренное R ₃ _	(тип прибора)			
					:				
T	ехнические данные составлены "" 200 г.								
_	···		(ловжность и полочен	Ответственного пыпа)					
	(должность и подпись ответственного лица)								

	«УТВЕРЖДАЮ»
	Командир воинской части
- -	(воинское звание, подпись, фамилия) "
AKT	
проверки состояния молниеза	ащитной системы
Комиссия в составе: председателя	— · · · · · · · · · · · · · · · · · · ·
членов комиссии:	
на основании приказа командира №от «	»200года
в период с «» по «»	200 года провела проверку состояния
МЗС объекта.	
В результате проверки установлено:	
 По акту предыдущей проверки не выполнены 	
1.	
2	
П. Организация молниезащиты на текущий год	
1	о базе о назначении лиц, ответственных за МЗС)
III. Документация на 1.	молниезащиту
(отмечается наличие проекта на молниезащиту объектов,	
существующих требований, наличие докуме с соответствующими п	
2	
2	состоянии МЗС; наличие плана проверки
3	

. (отмечается наличие и ведение в подразделениях части: паспорта МЗС и паспорта заземлителей МЗС)

Продолжение приложения Д.3.6

VI. Техническое состоя	ние молниезащитной с	истемы	
1. Объекты, оборудованные М	3C	_ объектов;	
2. Объекты, необорудованные	M3C		кты, (№ по генплану)
3. Объекты, МЗС которых не с (№ по генплану)			
4. Количество заземлителей, гласно плану шт., проверено _	•	м году провеј	рке со вскрытием со-
5. Количество МЗС требующих ремонта молниеприемников ремонта мачт шт. ремонта токоотводов ремонта заземлителей 6. Количество молниеотводов замены молниеприемников замены токоотводов шт., (№ по замены заземлителей 7. Количество заземлителей, мое шт., (№ по генплану)	шт., (№ по	генплану); гу); гу); генплану); гу);	_; _; _;
8. Количество плакатов с усл бующих: установки шт., (№ п замены (установки) шт	по генплану)	_;	ими надписями, тре-
Приложения: Протоколы зам молниезащитной системы (на		землителей и	проверки состояния
Председатель комиссии	 (в/звание, подпись, фамилия)	
члены комиссии	(в/звание, подпись, фамилия	1)	
			•
		•	
	(в/звание, подпись, фамили	я)	

ПРОТОКОЛ ЗАМЕРА СОПРОТИВЛЕНИЯ ЗАЗЕМЛИТЕЛЕЙ И ПРОВЕРКИ СОСТОЯНИЯ МОЛНИЕЗАЩИТНОЙ СИСТЕМЫ

Дата проверки «»	200	года
Состояние погоды:		
в последние три дня (сухая/сырая)		
в день проверки (сухая/сырая)		•

Вид молние- Место на-			Состояние (обнаруженные недостатки)				Измерен-	Допусти-	При-
№ п/п	защитной хождения МЗС (№ защи- щаемого сооруже- ния по ген- плану и № молниеот- вода)	молние- приемни- ков	токоот- водов	опор молние- приемников	конструктивных эле- ментов защиты от вторичных воздейст- вий молнии	ное сопротивление заземлителя Я, Ом	мое сопротивление заземлителя	меча-	
1	2	3	4	5	6	7	8	9	10

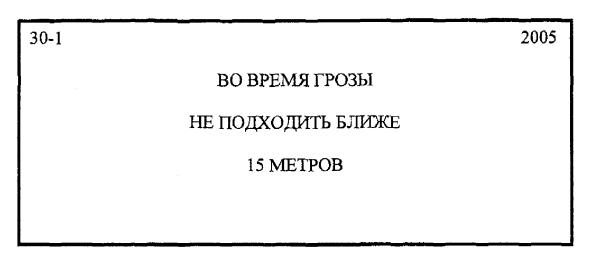
Представитель комиссии:	(в/звание, подпись, фамилия)	
Начальник подразделения: _	(ъ/звание, подпись, фамилия)	
Рабочая группа:		
	(в/звание, подпись, фамилия)	
	(в/звание, подпись, фамилия)	

приложение д.з.7

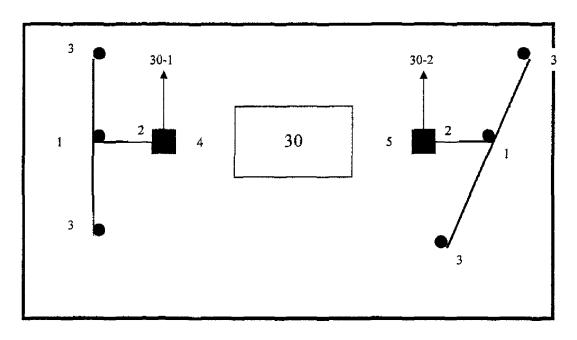
ЖУРНАЛ УЧЕТА СОСТОЯНИЯ МОЛНИЕЗАЩИТНОЙ СИСТЕМЫ

Q. 80	Дата и роспись ответственног лица об устранении недостатк хвдем хідткнифп и	, ,	1 1
	обнаруженные недостатки	1 4	1 1
	Допускаемая вепичина R∼доп, Ом		
	Мэмеренное сопротивление мО ,∽Я влэтипмэεв€	5	3
	конструктивных элементов защиты от вторичных воздействий молнии	7: 1 1	Хор. Хор.
Состояние	водовтоемнлом допо	Хор. Хор.	4 1
	токоотводов	Хор.	t (
	молниеприемников	Хор. Хор.	1 1
	Дата проверки	17.4.97	17.4.97
ежі	Дата установки или монта	10.9.96	06.8.96 20.4.98
(потон вахождения катойодтоу отрементом ватойодтоу отонтишевенном винежудоор отомевшитет оп модновотвода и унаплнет оп	30 - 1	43 - I
Вид	системы	Отдельно стоящий стержневой молниеотвод	Устройство защиты от вторичных воздействий молнии
ž	n/n	_	2

Типовая форма Приказа командира воинской части


ПРИКАЗ

Командира	воинской части номер части
N ₂	
« » 200 г. число, месяц, год	местоположение
О проверке в воинской части №	молниезащитной системы объекта
указать номера, ши	фры, названия объекта
• • • • • • • • • • • • • • • • • • •	
В целяхуказать причин	
указать причин	у проверки
Во исполнение требований ВСН 22-**-**	
ПРИКА	3 Ы В А Ю:
1 В срок с « » 200 г. по	у « » 200 г
провести проверку молниезащитной системы с	объекта
2 Назначить комиссию в составе: председателя	и комиссии
	должность, звание, ФИО
членов комиссии	
должность	, звание, ФИО


3 Комі	иссии выполнить рабо	ты по провер	ки состояния МЗС, в	T.Y.:
	- молниеприемник	ов №		
			указать номера молни	водовтоя
	- опор молнисотво	дов №	указать номера молни указать номера молни	
	- TOKOOTBOHOB No		указать номера молни	естводов
	и помоблюдов в п		указать номера молни указать номера молни	еотводов
	заземлителей			молниеотводов
	№		указать номера молни	естводов
CO BCK	рытием грунта.			
	4 Произвести измере	ния сопротив	пения заземлителей і	молниеотводов _№
			(без вскрытия грунта
	указать номе	водовтовинпом вс		
	5 Проверить наличи	е предупрежда	ноцих плакатов.	
		T	Іорядок отчетности	
		1	tohndow of Actinocti	•
	1 Результаты прове	жи МЗС доло	жить до « »	200 г. с приложением
следу	ющих документов:			·
	Акта проверки МЗС	(приложение	Д.3.6);	
	Протокола измерени	и сопротивле	ния заземлителей (пр	оиложение Д.3.3).
	_	·-		я МЗС (приложение Д.3.7).
	Контроль над выпот	гнением работ	по проверке МЗС во	зложить на главного инженера.
	110111poils mag barrow	and the second	no aposopno mo o po	and and an armond a standard par
	Прика	з довести до л	ичного состава в ча	асти, их касающейся
	Командир воинско	й части		
	, , , <u>, , , , , , , , , , , , , , , , </u>			
	звание	 	подпись	нмя, фамилия

Приложение Д.4 (обязательное)

Предупреждающие плакаты молниезащитной системы

Размеры 280х210мм; Черные буквы на белом фоне; Кайма черная на белом фоне; Высота знаков 20мм; Толщина линий 4мм
Рисунок Д.4.1 - Плакат с предупреждающей надписью

Размер 280х210мм; фон белый; надпись черным цветом; кайма 10мм черным цветом; толщина линий 1,5мм; высота знаков 10мм
На схеме показаны: 30 — форма периметра защищаемого здания, сооружения, открытой площадки с номером его по генплану; 30-1, 30-2 — молниеотводы с указанием их порядковых номеров; 1, 3 — заземлители с указанием их лучей; 2 - токоспуски; 4,5 — расстояния (м) от защищаемого здания, сооружения, открытой площадки до молниеотводов

Рисунок Д.4.2 - Плакат с условными знаками

Приложение Е (справочное)

Пример расчета молниезащитной системы хранилища боеприпасов

1 Исходные данные для расчета:

1.1. Характеристика сооружения:

хранилище сборное железобетонное

с металлической кровлей Рисунок Е.1. Размеры хранилища в плане: $a \times b = 72 \times 18 M$ высота до конька крыши $h_{\kappa} = 7.05 \text{M}.$

Хранилище имеет с двух сторон платформы для погрузки и выгрузки боеприпасов с навесами над ними и с железобетонными колонами, поддерживающими навесы.

Высота от земли до кровли навеса

 $h_{\rm M} = 6.3 \,\rm M.$

По одну сторону хранилища проходит железнодорожный путь, по другую-подъездная автодорога.

Ширина сооружения с платформами

 $b_1 = 24 \text{M};$

ширина с дорогами

 b_2 =33м.

Сооружение оборудовано электрическим освещением, электропроводка которого выполнена в газовых трубах. Подводка электроэнергии к зданию осуществляется кабелем в трубах.

Сооружение предназначено для хранения взрывоопасных изделий с категорией опасности боеприпасов Е6 по ВСН 21-01-98. Согласно п. 1.4 Норм хранилище относится к I^{ой} категории молниезащиты в случае прямого удара молнии.

Схема объекта с шестью отдельно стоящими молниеотводами представлена на рисунке E.1.

1.2 Местоположение объекта

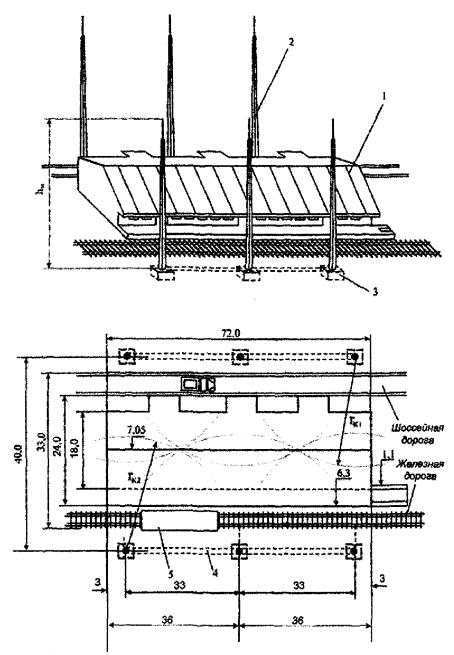
Псковская область.

Плотность ударов молнии в районе размещения объекта, определенная по приложению В для Псковской области, составляет:

1.3 Удельное сопротивление грунта в месте

n=4уд/км²·год.

ρ=100 Ом⋅м. посадки хранилища


- 1.4 Необходимо обеспечить защиту от прямых ударов молнии хранилища, платформ и подвижного состава, который может оказаться у платформы во время грозы.
 - 1.5 Требования к устройству молниезащиты

Эффективность молниезащиты должна соответствовать требованиям к объектам 1 категории, а допускаемая частота поражении объекта не должна превышать $N_{\rm d}$ <0,001 уд/в год.

Требуется установить необходимость использования МЗС и выполнить расчет параметров внешней молниезащиты.

Параметрами МЗС, которые следует определить для разработки системы молниезащиты, являются:

- расстояние от молниеотвода до объекта по воздуху $l_{\rm e}$ определяется в соответствии с п.п.2.1.2.4 Норм;
- расстояние от заземлителей молниеотвода до ближайших металлических конструкций объекта в грунте l_3 – определяется в соответствии с п.2.1.2.6 Норм;
- сопротивление растеканию тока с заземлителя и принцип его конструктивного решения R_3 - определяется в соответствии с п.2.1.2.2 и приложением Д.1 Норм;
- высота молниеотвода $h_{\rm M}$ определяется в соответствии с п.2.2 и 2.3 Норм.
- 2 Определение уровня и эффективности внешней МЗС от прямых ударов молнии. (Производится в соответствии с п.1.6 и приложением В настоящих Норм).

1-корпус хранилища; 2-молниеотвод; 3-железобетонный фундамент молниеотвода; 4-горизонтальный электрод заземления; 5-вагон; $r_{\kappa 1}$ -радиус защиты молниеотвода первой линии; $r_{\kappa 2}$ -радиус защиты молниеотвода второй линии

Рисунок Е.1 - Расстановка отдельно стоящих стержневых молниеотводов

2.1 Расчетная частота поражений молнией объекта (N_{II}) определяется на основании зависимостей, приведенных в приложении В Норм, и равна:

$$N_{\Pi}$$
=n[(72+6h_o)(33+6h)-7,7 h_{x}^{2}]·10⁻⁶=0,03уд/год,

Сравнение возможной частоты поражения объекта без устройств молниезащиты N_{II} с допустимой частотой прорыва молнии к объекту N_{ϕ} показывает необходимость устройства молниезащиты $(N_{II} >> N_{\phi}; 0.03 >> 0.001)$.

2.2 Определяется требуемая эффективность P_H МЗС при заданной допустимой частоте поражения N_{∂}

$$P_H = 1 - \frac{N_b}{N_B} = 1 - \frac{0.001}{0.033} = 0.97.$$

Эффективность внешней МЗС P_H =0,97 соответствует I^{old} категории молниезащиты объекта и может быть обеспечена молниезащитными устройствами с эффективностью защиты, равной P_H ≥0,99 и предельно допустимым числом прорывов молнии N_d ≤0,001 (см. таблицу 2.1 настоящих Норм).

2.3 Защита объекта $I^{\text{ой}}$ категории должна производится отдельно стоящими молниеотводами.

Площадь защищаемого объекта с учетом платформ и дорог составляет: $S=72 \times 33=2376 \text{ m}^2$.

Защита объекта с заданной площадью и выбранной эффективностью МЗС может быть обеспечена 4÷6 отдельно стоящими молниеотводами или одиночным (двойным) тросовым молниеотводом.

- 3 Защита хранилища с помощью отдельно стоящих стержневых молниеотводов
- 3.1 Расстояние от молниеотводов до объекта определяется для всех вариантов размещения в соответствии с п. 2.1.2.4 и для объектов I^{off} категории с удельным сопротивлением грунта ρ =100 Ом·м должно быть не менее l_s =5 м.

Размещение молниеотводов производится вдоль длинных сторон хранилища за дорогами. Схемы расстановки приведены на рисунках Е.1 - Е.4.

Расстояние от автодороги до молниеотводов

 $l_{\partial op} = 1,5 \text{m};$

Промежуток между автотранспортом и молнисотводом

должен быть не менее

5м.

Для этого следует предусмотреть фиксированные места стоянки транспорта, обеспечивающие заданные расстояния. Это может быть обеспечено, если под погрузкой находятся 1-2 автомобиля.

Расстояние от вагонов, находящихся под погрузкой, до линии молниеотводов должно быть не менее l_{aaz} =5м, а расстояние от рельсов до линии молниеотводов будет l_{z} =5,5м.

Расстояния от конька крыши до молниеотводов

 $l_{\kappa}=18$ и 22м;

определяются в виде:

$$l_{\kappa l} = b_2/2 + l_{\partial op}; \quad l_{\kappa 2} = b_2/2 + l_p.$$

Расстояния от крыппи навеса до молниеотводов

 l_{H} =6 и 10м;

$$l_{Hl} = (b_2 - b_1)/2 + l_{\partial op}; \quad l_{H2} = (b_2 - b_1)/2 + l_p.$$

Расстояние от крыши вагона до линии размещения молниеотводов в соответствии с п.2.1.2.4 Норм l_s =5м.

Расстояние от торцов объекта до линии установки первой и последней пар опор молниеотводов принимается для варианта с 4 опорами l_I =5м, для варианта с 6 опорами l_I =3м.

3.2 Определение расстояний от заземлителей молниеотводов до металлоконструкций объекта по грунту

Расстояния от заземлителей молниеотводов до объекта и связанных с ним металлических конструкций и коммуникаций, размещенных в грунте, производится на основании п.2.1.5 и должны быть не менее $l_3 = (l_8 + 2) \ge 7$ м.

3.3 Выбор заземлителей отдельно стоящих стержневых молниеотводов и расчет их сопротивлений

В соответствии с п. 2.1.2.2 сопротивление заземлителя молниеотвода для грунта с удельным сопротивлением ρ =100 Ом·м не должно превышать 5 Ом.

Выбирается заземлитель в виде железобетонного фундамента молниеотвода размером $1 \times 1 \times 1$ м. Его сопротивление $R_{3\phi}$ рассчитывается по формуле 1.1 таблицы Д.1.5.

$$R_{3\phi} = \frac{\rho}{2\pi\sqrt{\frac{S}{\pi}}} \left[1 + \frac{1}{4} \frac{\sqrt{S/\pi}}{H} \right] = 12,2OM$$

где S-площадь эквивалентной сферы фундамента: $S=4\pi r^2$ и соответствует поверхности фундамента, равной $S=1\times 1\times 6\text{m}^2=6\text{m}^2$;

H-высота от поверхности грунта до оси симметрии фундамента, H=1м.

Для снижения сопротивления заземлителей фундаменты молниеотводов, размещенных с одной стороны объекта, могут быть соединены между собой стальной полосой, которую сдедует приварить в месте стыковки опоры молниеотвода с арматурой фундамента и расположить на глубине не менее 0,5 метра.

Длина горизонтального электрода-полосы, (см. рисунок Е.1, поз. 4), равна двум расстояниям между молниеотводами I_T =2×33м=66м. Сопротивление горизонтального электрода, рассчитанное по формуле п.5 таблицы Д.1.5 приложения Д.1 для сечения полосы 50×4мм и глубине размещения 0,5м, равно R_{3T} =4,5 Ом, а суммарное стационарное сопротивление комбинированного заземлителя определится в виде:

$$\frac{1}{R_3} = \frac{3}{R_{3\phi}} + \frac{1}{R_{3\Gamma}} = 0,466; \qquad R_3 = 2,2 \text{ Om.}$$

Для схемы рисунка Е.2 при длине полосы l_T =62м и тех же условиях прокладки сопротивление горизонтальной полосы равно R_{3f} =5,6 Ом, а сопротивление комбинированного заземлителя для двух фундаментов, объединенных полосой (см. рисунок Е.2),определяется в виде:

$$\frac{1}{R_3} = \frac{2}{R_{3\phi}} + \frac{1}{R_{3\Gamma}} = 0,34;$$
 $R_3 = 2,9 \ Om.$

- 3.4 Расчет высоты молниеотводов
- 3.4.1 Расчет высоты отдельно стоящих стержневых молниеотводов при известных расстояниях между ними и объектом производиться в соответствии с п.2.3 Норм.

Для рассматриваемого объекта в качестве схемы молниезащиты может быть применена система из четырех стержневых или из шести стержневых отдельно стоящих молниеотводов.

Высота четырех стержневых молниеотводов рассчитывается по п. 2.3.3 для эффективности молниезащиты P_H =0,99.

Расчет системы из щести стержневых молниеотводов также следует выполнять как для четырех стержневых молниеотводов. При этом две пары стержней первой и второй системы четырех стержневых молниеотводов являются общими.

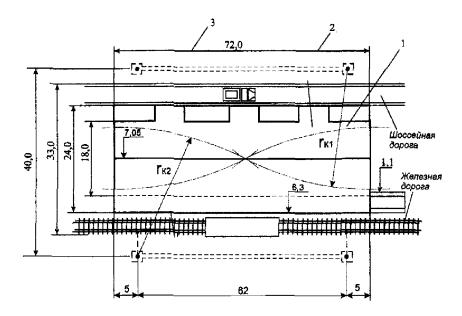
3.4.2 Схема с четырьмя стержневыми отдельно стоящими молниеотводами

Схема расстановки четырех стержневых молниеотводов показана на рисунке Е.2. Расчетная схема для определения зон защиты молниеотводов приведена на рисунке Е.3.

Первая линия установки опор молниеотводов со стороны автодороги находятся на расстоянии $l_{\kappa i}$ =18 м от конька крыши — самой высокой части объекта, требующей защиты от поражения молнией. Угол защиты α в соответствии с таблицей 2.1 Норм для защиты объектов $I^{\text{ой}}$ категории четырьмя стержневыми молниеотводами равен α =52°, tg52°=1,28.

Радиус защиты $r_{\kappa l}$ на высоте конька объекта определяется (см. рисунок E.2):

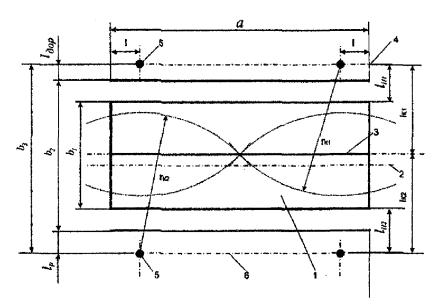
$$r_{\kappa 1} = \sqrt{l_{\kappa 1}^2 + \left(\frac{a}{2} - l_1\right)^2} \approx 37.6 \,\mathrm{M}.$$


где $l_{\kappa l}$ - расстояние от первой линии молниеотводов до конька хранилища (см. п.3.1настоящего приложения и рисунок Е.3).

Активная высота молниеотвода h' определяется в виде:

$$h_1 = \frac{r_{\kappa 1}}{tg\alpha} = 29,4 \text{ M}.$$

Общая высота каждой опоры со стороны автодороги равна:


$$h_{\mu 1} = h_1' + h_{\mu} = 29.4 + 7 = 36.4 \approx 37 M.$$

1-хранилищк; 2-молниеотвод; 3-фудамент молниеотвода; 4-горизонтальный электрод заземления; 5-вагон;

 $r_{\kappa l}$ —радиус защиты молниеотвода первой линии; $r_{\kappa 2}$ —радиус защиты молниеотвода второй линии

Рисунок Е.2 - Защита объекта четырьмя отдельно стоящими стержневыми молниеотводами

1-площадь защищаемого хранилища; 2-ось симметрии относительно молнисотводов; 3-конек кровли хранилища; 4-первая линия установки молнисотводов; 5-молнисотводы; 6-вторая линия установки молнисотводов; a-длина хранилища; b_I -ширина хранилища с платформами и навесами; b_Z -ширина защищаемого сооружения с дорогами и транспортом;

 b_3 -расстояние между линиями молниеотводов; l-расстояние от торца сооружения до молниеотвода; l_{oop} -расстояние от внешнего края автодороги до первой линии молниеотводов; l_p -расстояние от рельсов до второй линии молниеотводов; $r_{\kappa l}$, $r_{\kappa 2}$ -радиусы защиты молниеотводов первой и второй линии; $l_{\kappa l}$, $l_{\kappa 2}$ -расстояния от первой и второй линии молниеотводов до конька крыши;

 l_{n1}, l_{n2} -расстояния от первои и второи линии молниеотводов до конька крыши l_{H1}, l_{H2} -расстояния первой и второй линий молниеотводов от крыш навесов

Рисунок Е.3 - Расчетная схема для определения высоты четырех отдельно стоящих молниеотводов

Со стороны железной дороги линия установки молниеотводов отнесена по сравнению с противоположной стороной еще на два метра (чтобы обеспечить расстояние по воздуху $l_e \ge 5$ м между вагонами, которые могут оказаться на путях во время грозы, и опорами молниеотводов). Расстояния до конька крыши и края крыши навеса равны соответственно: $l_{\kappa 2} = 22$ м и $l_{\kappa 2} = 10$ м (см. рисунок E.3).

Расчет выполняется аналогично выше приведенному методу.

Радиус защиты на высоте конька объекта определяется:

$$r_{\kappa 2} = \sqrt{l_{\kappa 2}^2 + \left(\frac{\frac{a}{2} - l_1}{2}\right)^2} \approx 39,66 \approx 40 \,\mathrm{M}.$$

где $l_{\kappa 2}$ - расстояние от второй линии молниеотводов до конька крыши хранилища (см. п.3.1 настоящего приложения и рисунок E.3).

Активная высота молниеотвода h'_{2} определяется в виде:

$$h_2' = \frac{r_{\kappa 2}}{tg\alpha} \approx 31M$$

Общая высота каждой опоры со стороны железной дороги равна:

$$h_{x2} = h_2' + h_x = 31 + 7 = 38M$$
.

Из результатов выполненных расчетов следует, что:

для защиты объекта Іон категории системой молниезащиты

с количеством отдельно стоящих молниеотводов, равным 4 шт

требуются две опоры высотой

 $h_{\rm M1} = 37 {\rm M}$

и две опоры высотой

 $h_{m2}=38M.$

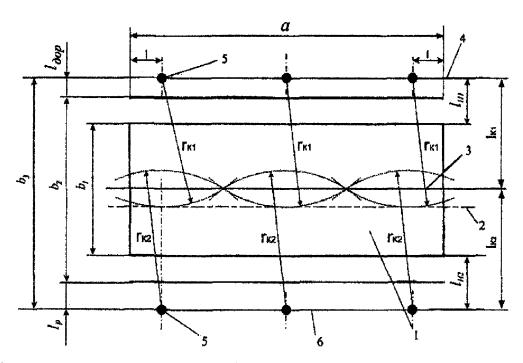
Заземлители молниеотводов, размещенных с каждой стороны от объекта, являются их железобетонные фундаменты размером $1\times1\times1$ м, объединенные горизонтальным заземлителем - стальной полосой - с суммарным сопротивлением заземления $R_{11}\approx2.9~Om$.

3.4.3 Схема с щестью отдельно стоящими молниеотводами

При использовании схемы молниезащиты с шестью отдельно стоящими стержневыми молниеотводами расчет их высоты производится как для двух совместно действующих четырех стержневых молниеотводов (см. п.2.3.3, 2.3.4, таблица 2.1 Норм и п.п.3.4.1, 3.4.2 настоящего приложения).

Оба комплекта четырех стержневых молниеотводов размещаются за дорогами. Одна пара опор молниеотводов в каждом комплекте совмещается с аналогичной парой другого комплекта. Поэтому используются только три пары молниеотводов по схеме, показанной на рисунке Е.1.

Расстояния от молниеотводов до выступающих краев разных частей и элементов защищаемого объекта будут такими, как показано в п. 3.1 и на рисунках Е.1 и Е.4.


Места установки опор молниеотводов со стороны автодороги находятся на расстояниях $l_{\kappa l}=18$ м от конька крыши — самой высокой части объекта, требующей защиты от поражения молнией. Угол защиты α в соответствии с таблицей 2.1 Норм для защиты объектов $I^{\text{ой}}$ категории шестью стержневыми молниеотводами равен $\alpha=52^{0}$; $tg52^{0}=1,28$.

Радиус защиты на высоте конька объекта определяется:

$$r_{\kappa_1} = \sqrt{l_{\kappa_1}^2 + \left(\frac{\frac{a}{2} - l_1}{2}\right)^2} \approx 24.4 \text{ m.}$$

Эффективная высота молниеотвода h_l определяется в виде:

$$h_1' = \frac{r_{\kappa 1}}{tg\alpha} \approx 19,1 \text{M}.$$

1-площадь защищаемого хранилища; 2-ось симметрии относительно молниестводов; 3-конек кровли; 4-первая линия установки молниестводов; 5-молниестводы; 6-вторая линия установки молниестводов;

a-длина хранилища; b_1 -ширина хранилища с платформами и навесами; b_2 -ширина защищаемого сооружения с дорогами и транспортом; b_3 -расстояние между линиями молниеотводов;

l-расстояние от торца сооружения до молниеотвода; $l_{\partial op}$ -расстояние от внешнего края автодороги до первой линии молниеотводов; l_p -расстояние от рельсов до второй линии молниеотводов;

 $l_{\kappa l_1}$, $l_{\kappa 2}$ —расстояния от первой и второй линий молниеотводов до конька крыши; $r_{\kappa l_1}$, $r_{\kappa 2}$ —радиусы защиты молниеотводов первой и второй линии

Рисунок Е.4 - Расчетная схема для определения высоты шести отдельно стоящих молниеотводов

Общая высота каждой опоры со стороны автодороги равна:

$$h_{\rm Ml} = h_{\rm l} + h_{\rm k} = 26.1 \approx 27 M$$
.

Со стороны железной дороги расстояния от линии расстановки молнисотводов до конька крыши и края крыши навеса соответственно равны: $l_{\kappa}=22$ м и $l_{\kappa}=10$ м.

Радиус защиты на высоте конька объекта определяется (см. рисунки Е.1 и Е.4):

$$r_{r2} = \sqrt{l_{\kappa^2}^2 + \left(\frac{\frac{a}{2} - l_1}{2}\right)^2} = 27,5 \text{ m}.$$

Эффективная высота молниеотвода h_2' определяется в виде:

$$h_2' = \frac{r_{\kappa 2}}{tg\alpha} \approx 21,5M$$

Общая высота каждой опоры со стороны железной дороги равна:

$$h_{M2} = h_2' + h_{\kappa} = 29 M.$$

Из результатов выполненных расчетов следует, что: для защиты объекта $I^{\text{ой}}$ категории системой молниезащиты с количеством отдельно стоящих молниеотводов,

равным 6 шт, требуются три опоры высотой h_{Ml} =27м и три опоры высотой h_{Ml} =29м

Заземлителями молнисотводов, размещенных с каждой стороны от объекта, являются железобетонные фундаменты размером $1 \times 1 \times 1$ м, объединенные горизонтальным заземлителем - стальной полосой - с суммарным сопротивлением заземления $R_1 \approx 2.2$ Ом.

- 4 Определение параметров одиночного тросового молниеотвода
- 4.1 Схема размещения тросового молниеотвода показана на рисунке Е.5.

Опоры устанавливаются по оси объекта с торцевых сторон. Трос подвешен параллельно коньку крыппи.

Определение параметров тросового молниеотвода производится на основании п.п.2.1.2.2÷2.1.2.6, 2.3.4 и таблицы 2.1 Норм.

4.2 Расстояния от опор тросового молниеотвода до объекта в соответствии с п.2.1.2.4 для удельного сопротивления грунта ρ =100 Ом·м, должно быть l \geq 5м.

В соответствии с п. 2.1.2.6 заземлитель молниеотвода должен размещаться на расстоянии $l_3 \ge (l_8 + 2)$ м от металлоконструкций объекта и подходящих к нему коммуникаций. А если в качестве заземлителя будет использоваться железобетонный фундамент молниеотвода, который жестко связан с опорой молниеотвода и не может быть отнесен от нее для защиты от пробоя с заземлителя на металлоконструкции объекта, то в таком случае следует выбирать расстояние между заземлителем молниеотвода и защищаемым объектом в грунте l_3 , и в зависимости от этого расстояния, принимать расстояние между объектом и молниеотводом в воздухе l_4 .

При размерах фундамента 1x1x1м расстояние от заземлителя молниеотвода (грани фундамента молниеотвода, обращенной в сторону хранилища) до фундамента хранилища в грунте принимается равным l_3 =7м, а от опор до ограждающих конструкций в воздухе обуславливается конструктивными решениями заземлителя и взаимным расположением опор молниеотвода и защищаемого объекта и равно l_8 =7,5м.

4.3 Выбор заземлителей тросового молниеотвода

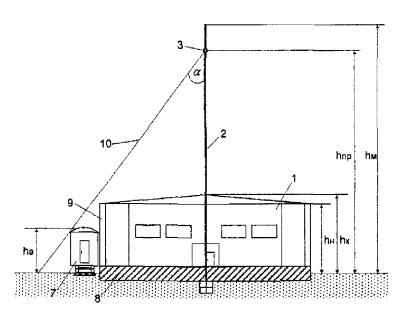
Особенностью заземлителей тросового молниеотвода является то, что они связаны между собой электропроводным тросом. Поэтому растекание тока при ударе молнии в трос будет направлено в обе стороны к опорам и заземлителям.

При ударе молнии в середину троса через каждую опору и ее заземлитель будет протекать половина тока. Сопротивление заземлителя каждого молниеотвода в соответствии с п.2.1.2.2 принимается в два раза больше нормативного, рекомендуемого для отдельно стоящих стержневых, т. е. R₂≤10 Ом.

Требуемое сопротивление может быть обеспечено комбинированным заземлителем, состоящим из железобетонного фундамента опор молниеотвода и дополнительного искусственного заземлителя из горизонтального и вертикального электродов, размещенных на глубине не менее 0,5м.

Железобетонный фундамент размером $1 \times 1 \times 1$ м обеспечивает сопротивление заземлителя $R_{3\phi} \approx 12,2$ Ом в грунте с $\rho = 100$ Ом·м (см.п.1, таблицы Д.1.5, приложения Д.1).

Габариты искусственного заземлителя: горизонтальный полосовой электрод сечением 50×4 мм, длиной l_r =2м, соединенный с вертикальным электродом-трубой диаметром d=50мм, высотой h_s =1,5м.


Рабочая часть горизонтального электрода составит l_{IA} =1м, т.к. второй метр горизонтального электрода размещается по поверхности фундамента до места сварки его с металлической опорой.

Сопротивление горизонтальной полосы длиной $l_{\Gamma A}$ =1м (см. п.5.1 таблицы Д.1.5 приложения Д.1) равно: $R_{3\Gamma}$ =48 Om.

Сопротивление вертикального электрода h_e =1,5M (см. п.3.3 таблицы Д.1.5 приложения Д.1) равно: R_{3B} =51 O_M .

б

Вид по стрелке А

1-корпус хранилища; 2-опора молниеотвода; 3-трос; 4-железобетонный фундамент; 5-горизонтальный электрод; 6-вертикальный электрод зазаемлителя; 7-вагон; 8-железобетонный фундамент хранилища; 9-железобетонные колоны навеса; 10-граница зоны защиты со стороны железной дороги; $h_{\rm M}$ -высота опоры молниеотвода; $h_{\rm M}$ -высота вагона; $h_{\rm K}$ -высота объекта до конька; $h_{\rm H}$ -высота навеса;

 $h_{n\rho}$ -высота троса над землей в точке провиса; lpha-угол защиты тросового молниеотвода в точке провиса

Рисунок Е.5 - Схема защиты объекта одиночным тросовым молниеотводом

Суммарное сопротивление заземления сложного заземлителя определяется в виде:

$$\frac{1}{R_3} = \frac{1}{R_{3\phi}} + \frac{1}{R_{3\varGamma}} + \frac{1}{R_{3B}} = 0,122; \quad R_3 = 8,2 \text{ Om.}$$

Полученная величина не превыщает требуемого номинала ($R_3 < 10$ Ом).

- 4.4 Расчет высоты одиночного тросового молниеотвода
- 4.4.1 Расстояние от опор молниеотвода до конька крыши равно l_e =7,5м (см. п.4.2), угол защиты тросом для объекта I^{ob} категории равен α =34°, tg34°=0,6745 (см. таблицу 2.1 Норм), а площадь, защищаемая по I^{ob} категории, равна S=72×33м.
- 4.4.2 Расчет высоты подвеса тросового молниеотвода для I^{ой} категории объекта произволится в соответствии с п.2.3.4.

Эффективная высота подвеса троса с учетом защиты дорог и вагонов высотой h_s =4м определяется в виде:

$$h_{T_0} = \frac{b}{2tg\alpha} = \frac{33}{2 \cdot 0,6745} \approx 24,5 \approx 25 M$$

Высота опоры молниеотвода с учетом стрелы провиса троса:

$$h_{\rm M} = h_{Te} + h_{e} + 2 = 31_{\rm M}$$
.

4.4.3 Проверка на защищенность уровня края крыши навеса

Высота края навеса h_H =6,3м, причем h_H > h_θ на 2метра, сдедовательно, эффективная высота троса для защиты уровня вагона составляет h_{TB} =25+2=27м.

Определение ширины зоны защиты на уровне крыщи навеса

Если эффективная высота тросового молниеотвода, равная h_{T_6} =25м, обеспечивает при угле защиты α =34 0 ширину $\frac{b_2}{2}$ и при этом $tg\alpha=\frac{b_2}{2h_T}$, то при том же угле защиты, но эффек-

тивной высоте $h_{78}'=27$ м, ширина зон защиты будет равна:

$$b_T' = 2h_{TH} \cdot tg\alpha = 2 \cdot 27 \cdot 0,6745 \approx 36_M$$

т.е. на уровне высоты крыши вагона, ширина которого $b_2 = 33_{M_t}$ защита от ПУМ обеспечивается со значительным запасом $(b_T' > b_2)$.

4.4.4 Проверка на прорыв разряда молнии с троса на объект

Допустимое расстояние от середины троса до конька крыши в соответствии с п.2.1.2.5 должно быть не менее $h_{TK\partial on}$ =6м при $\rho \le 500$ Ом·м.

По результатам расчета высота h_{TK} =22м, т.е. $h_{TK}>h_{TK\partial on}$.

4.5 Результаты расчета молниезащиты тросовым молниеотводом

Защита объекта I^{ой} категории обеспечивается одиночным тросовым молниеотводом при следующих параметрах:

-	расстояние от молниеотвода до объекта по воздуху	l е=7,5 м;
-	расстояние от заземлителя до объекта в грунте	l ₃ =7 м;
-	общая длина троса	L_T ≈155 M ;
	сопротивление заземлителя молнисотвода	R ₃=8,2 Ом;
-	расстояние от точки провиса до конька крыши	$h_T=22 \text{ M};$
-	высота опор молниеотвода	h м=31 м.

4.6 Выбор предпочтительного конструктивного решения устройства молниезащиты должен производиться на основании технико-экономического сравнения рассмотренных вариантов.

Библиография

- [1] ВСН 22-02-98/МО РФ. Нормы по проектированию устройству экс-М.: 1999г. плуатации молниезащиты специальных объектов Министерства обороны Российской Федерации.
- [2] ВСН 21-01-98/МО РФ. Нормы проектирования арсеналов, баз и М.: 1998г. складов ракет и боеприпасов. Требования пожаровзрывобезопасности.
- [3] СО 153-343.21.122-2003, М., Инструкция по устройству молниезащиты МЭИ, 2004г. зданий, сооружений и промышленных коммуникаций.
- [4] IEC 61024-1 (1990-04) Молниезащита строительных конструкций. Часть І. Основные принципы.
- [5] IEC 62305. (Проект) Изд. 1.0, Защита от молнии. Часть 1-5. 2003г.
- [6] РД 34.21.122-87/Минэнерго Инструкция по устройству молниезащиты СССР.-М.: Энергоатомиздат.- зданий и сооружений.
- [7] В.Н. Веревкин, А.Н. Толчий. Молниезащита, электростатическая безопасность и защита от статического электричества. МЧС России М: ВНИИ ПО-2003г.
- [8] Р.Н. Корякин. Справочник по молниезащите. Москва, ЗАО «Энергосервис».- 2005г.
- [9] ВСП 45-02-01/МО РФ. М.:Минобороны, 2001.
- [10] Базелян Э.М. и др. Физические и инженерные основы молниезащиты. Л.: Гидрометеоиздат, 1978г.
- [11] Михайлов М.И., Разумов Л.Д., Соколов С.Л. Электромагнитные влияния на сооружения связи. М.:Энергия, 1973г.
- [12] ІЕС 61312-1. Изд. 02, 1995г. Область применения и объекты молниезащиты.

Подписано к печати 25.3.08 г.

Формат 60х90/16

Зак. 9/08

Объем II п.л.

Тираж 300 экз.

Отпечатано в типографии 26 ШНИИ МО РФ 143913 г. Балашиха Московской области